Automated robot-based computed tomography trajectory optimization using differential evolution in 3D radon space

  • Limited accessibility of the X-ray hardware manipulating robots stemming from collision elements and the restricted workspace of the robots as well as areas of significant X-ray absorption are inherent characteristics of robot-based computed tomography scanning in subregions of large structures. The manual definition of trajectories is resource-intensive and results in substantial user influence on the resulting data quality. Therefore, this work proposes a method for the automated calculation of optimized (partial) circular scan trajectories for robot-based computed tomography. Specifically, a differential evolution algorithm is used to find global parametrization optima by estimating the reconstruction quality of trajectories. This estimation is based on a quantitative sampling quality metric in 3D Radon space, which is introduced in this work. The proposed method is evaluated on a test body from a region of limited accessibility within the strut mount of a car body. TheLimited accessibility of the X-ray hardware manipulating robots stemming from collision elements and the restricted workspace of the robots as well as areas of significant X-ray absorption are inherent characteristics of robot-based computed tomography scanning in subregions of large structures. The manual definition of trajectories is resource-intensive and results in substantial user influence on the resulting data quality. Therefore, this work proposes a method for the automated calculation of optimized (partial) circular scan trajectories for robot-based computed tomography. Specifically, a differential evolution algorithm is used to find global parametrization optima by estimating the reconstruction quality of trajectories. This estimation is based on a quantitative sampling quality metric in 3D Radon space, which is introduced in this work. The proposed method is evaluated on a test body from a region of limited accessibility within the strut mount of a car body. The reconstruction results are compared to those obtained from nearly 1000 reference trajectories. The results demonstrate that the proposed technique automatically generates trajectories that surpass the global optimum in data completeness of all reference trajectories. This methodology thus enables the elimination of user influence in trajectory parametrization.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Maximilian Linde, Wolfram Wiest, Anna TrauthORCiDGND, Markus G. R. SauseORCiDGND
URN:urn:nbn:de:bvb:384-opus4-1231257
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/123125
ISSN:0195-9298OPAC
ISSN:1573-4862OPAC
Parent Title (English):Journal of Nondestructive Evaluation
Publisher:Springer Science and Business Media LLC
Place of publication:Berlin
Type:Article
Language:English
Year of first Publication:2025
Publishing Institution:Universität Augsburg
Release Date:2025/07/03
Volume:44
Issue:3
First Page:71
DOI:https://doi.org/10.1007/s10921-025-01204-x
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Materials Resource Management
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik / Lehrstuhl für Experimentalphysik II
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Materials Resource Management / Lehrstuhl für Hybride Werkstoffe
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Materials Resource Management / Professur für Mechanical Engineering
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 50 Naturwissenschaften / 500 Naturwissenschaften und Mathematik
5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Licence (German):CC-BY-NC-ND 4.0: Creative Commons: Namensnennung - Nicht kommerziell - Keine Bearbeitung (mit Print on Demand)