Electronic and photophysical properties of a heterometallic Ru(II)–Cu(I) Kuratowski complex: insights from spectroscopy and density functional theory calculations

  • Polynuclear metal complexes offer tunable electronic properties that are valuable for photocatalysis and molecular electronics. Herein, the synthesis and characterization of a poly-heteronuclear Kuratowski complex, [RuIICuI4(Me2bta)6(PPh3)4] is presented. This complex is designed to investigate the electronic coupling between strongly reducing Cu(I) centers and a Ru(II) ion, mediated by a highly symmetric framework of triazolate ligands. Electrochemical studies reveal coupled redox behavior between Ru(II) and Cu(I), while UV–vis spectroscopy shows an overlapping Ru- and Cu-centered metal-to-ligand charge transfer (MLCT) band, redshifted in comparison to its {RuIIZnII4} analog. Despite this, fluorescence lifetime measurements indicate that ultrafast nonradiative relaxation limits electron transfer between the metal centers. Density functional theory (DFT) and time-dependent-DFT calculations confirm that ligand-field effects, rather than direct Ru–Cu interactions, drive the MLCTPolynuclear metal complexes offer tunable electronic properties that are valuable for photocatalysis and molecular electronics. Herein, the synthesis and characterization of a poly-heteronuclear Kuratowski complex, [RuIICuI4(Me2bta)6(PPh3)4] is presented. This complex is designed to investigate the electronic coupling between strongly reducing Cu(I) centers and a Ru(II) ion, mediated by a highly symmetric framework of triazolate ligands. Electrochemical studies reveal coupled redox behavior between Ru(II) and Cu(I), while UV–vis spectroscopy shows an overlapping Ru- and Cu-centered metal-to-ligand charge transfer (MLCT) band, redshifted in comparison to its {RuIIZnII4} analog. Despite this, fluorescence lifetime measurements indicate that ultrafast nonradiative relaxation limits electron transfer between the metal centers. Density functional theory (DFT) and time-dependent-DFT calculations confirm that ligand-field effects, rather than direct Ru–Cu interactions, drive the MLCT redshift. These observations offer tentative insights into excited-state dynamics and highlight design aspects for controlling electronic communication in polynuclear systems.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Wiebke G. Rehfuß, Andreas Kalytta‐Mewes, Maryana Kraft, Dirk VolkmerORCiDGND
URN:urn:nbn:de:bvb:384-opus4-1235516
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/123551
ISSN:1434-1948OPAC
ISSN:1099-0682OPAC
Parent Title (English):European Journal of Inorganic Chemistry
Publisher:Wiley
Type:Article
Language:English
Year of first Publication:2025
Publishing Institution:Universität Augsburg
Release Date:2025/07/25
Volume:28
Issue:22
First Page:e202500190
DOI:https://doi.org/10.1002/ejic.202500190
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik / Lehrstuhl für Festkörperchemie
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung