COVERAGE - comparing variable and feature selection strategies for prediction - protocol of a simulation study in low-dimensional transplantation data [Study protocol]

  • The integration of machine learning methodologies has become prevalent in the development of clinical prediction models, often suggesting superior performance compared to traditional statistical techniques. Within the scope of low-dimensional datasets, encompassing both classical and machine learning paradigms, we plan to undertake a comparison of variable selection methodologies through simulation-based analysis. The principal aim is the comparison of the variable selection strategies with respect to relative predictive accuracy and its variability, with a secondary aim the comparison of descriptive accuracy. We use six distinct statistical learning approaches across both data generation and model learning. The present manuscript is a protocol for the corresponding simulation study. We describe the planned steps through the Aims, Data, Estimands, Methods, and Performance framework for simulation study design and reporting.

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Linard Hoessly, Simon Schwab, Frédérique Chammartin, Alexander LeichtleORCiDGND, Peter Werner Schreiber, Dionysios Neofytos, Jaromil Frossard, Michael Koller
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/124892
URL:https://osf.io/k6c8f/metadata/osf
Parent Title (English):OSF Registries
Publisher:Center for Open Science
Place of publication:Charlottesville, VA
Type:Research Data
Language:English
Date of Publication (online):2025/08/27
Year of first Publication:2025
Publishing Institution:Universität Augsburg
Release Date:2025/09/01
Edition:Online-Ressource
Data type:Other
Size:430.0 kB
Format:pdf
Institutes:Medizinische Fakultät
Medizinische Fakultät / Universitätsklinikum
Medizinische Fakultät / Professur für Laboratoriumsmedizin
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit