Artificial intelligence-based tools for precision diagnosis and treatment of neurofibromatosis type 1 associated peripheral and central glial tumors

  • Modern Artificial Intelligence (AI) has demonstrated its effectiveness by achieving human-level performance in various complex tasks, including the biomedical field. Cancer research, adapting to a fast-changing world, is leveraging AI as a promising framework to better understand tumor development. Moreover, current AI methods can help predict more suitable and personalized treatment strategies for specific types of tumors. We explored AI methods applied to Neurofibromatosis Type 1, focusing on glial tumors. Additionally, we have reviewed all publicly available datasets to date. Discussion of future challenges is highly desirable since Neurofibromatosis Type 1 is one of the most common hereditary tumor syndromes and is associated with an increased rate of glial tumors as well as a reduced life expectancy due to malignancy.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Fabio HellmannORCiDGND, Inka Ristow, Lennart Well, Swanhild Lohse, Maxim Anokhin, Michaela KuhlenORCiDGND, Elisabeth AndréORCiDGND, Anja Harder
URN:urn:nbn:de:bvb:384-opus4-1261285
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/126128
ISSN:1750-1172OPAC
Parent Title (English):Orphanet Journal of Rare Diseases
Publisher:Springer Science and Business Media LLC
Place of publication:Berlin
Type:Article
Language:English
Year of first Publication:2025
Publishing Institution:Universität Augsburg
Release Date:2025/11/10
Volume:20
Issue:1
First Page:551
DOI:https://doi.org/10.1186/s13023-025-04093-5
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Medizinische Fakultät
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Menschzentrierte Künstliche Intelligenz
Medizinische Fakultät / Universitätsklinikum
Medizinische Fakultät / Lehrstuhl für Kinder- und Jugendmedizin
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung