Texts or images? A fine-grained analysis on the effectiveness of input representations and models for table question answering

  • In table question answering (TQA), tables are encoded as either texts or images. Prior work suggests that passing images of tables to multi-modal large language models (MLLMs) performs comparably to or even better than using textual input with large language models (LLMs). However, the lack of controlled setups limits fine-grained distinctions between these approaches. In this paper, we conduct the first controlled study on the effectiveness of several combinations of table representations and models from two perspectives: question complexity and table size. We build a new benchmark based on existing TQA datasets. In a systematic analysis of seven pairs of MLLMs and LLMs, we find that the best combination of table representation and model varies across setups. We propose FRES, a method selecting table representations dynamically, and observe a 10% average performance improvement compared to using both representations indiscriminately.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Wei Zhou, Mohsen Mesgar, Heike Adel, Annemarie FriedrichORCiDGND
URN:urn:nbn:de:bvb:384-opus4-1264002
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/126400
ISBN:979-8-89176-256-5OPAC
Parent Title (English):Findings of the Association for Computational Linguistics: ACL 2025, 27 July - 1 August 2025, Vienna, Austria
Publisher:Association for Computational Linguistics (ACL)
Place of publication:Stroudsburg, PA
Editor:Wanxiang Che, Joyce Nabende, Ekaterina Shutova, Mohammad Taher Pilehvar
Type:Conference Proceeding
Language:English
Date of Publication (online):2025/11/19
Year of first Publication:2025
Publishing Institution:Universität Augsburg
Release Date:2025/11/26
First Page:2307
Last Page:2318
DOI:https://doi.org/10.18653/v1/2025.findings-acl.117
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Computerlinguistik
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung