Mean-field behaviour of the random connection model on hyperbolic space

  • We study the random connection model on hyperbolic space H-d in dimension d=2,3. Vertices of the spatial random graph are given as a Poisson point process with intensity lambda>0. Upon variation of lambda, there is a percolation phase transition: there exists a critical value lambda(c)>0 such that for lambdalambda(c). We identify certain critical exponents that characterise the clusters at (and near) lambda(c), and show that they agree with the mean-field values for percolation. We derive the exponents through isoperimetric properties of critical percolation clusters rather than via a calculation of the triangle diagram.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Matthew Dickson, Markus HeydenreichORCiDGND
URN:urn:nbn:de:bvb:384-opus4-1269607
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/126960
ISSN:0024-6107OPAC
ISSN:1469-7750OPAC
Parent Title (English):Journal of the London Mathematical Society
Publisher:Wiley
Place of publication:Weinheim
Type:Article
Language:English
Year of first Publication:2025
Publishing Institution:Universität Augsburg
Release Date:2025/12/10
Volume:112
Issue:5
First Page:e70345
DOI:https://doi.org/10.1112/jlms.70345
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Lehrstuhl für Stochastik und ihre Anwendungen
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung