On the complete classification of unitary N = 2 minimal superconformal field theories

  • Aiming at a complete classification of unitary N = 2 minimal models (where the assumption of space-time supersymmetry has been dropped), it is shown that each candidate for a modular invariant partition function of such a theory is indeed the partition function of a minimal model. A family of models constructed via orbifoldings of either the diagonal model or of the space-time supersymmetric exceptional models demonstrates that there exists a unitary N = 2 minimal model for every one of the allowed partition functions in the list obtained from Gannon's work [Gannon1996]. Kreuzer and Schellekens' conjecture that all simple current invariants can be obtained as orbifolds of the diagonal model, even when the extra assumption of higher-genus modular invariance is dropped, is confirmed in the case of the unitary N = 2 minimal models by simple counting arguments. We find a nice characterisation of the projection from the Hilbert space of a minimal model with k odd to its modular invariantAiming at a complete classification of unitary N = 2 minimal models (where the assumption of space-time supersymmetry has been dropped), it is shown that each candidate for a modular invariant partition function of such a theory is indeed the partition function of a minimal model. A family of models constructed via orbifoldings of either the diagonal model or of the space-time supersymmetric exceptional models demonstrates that there exists a unitary N = 2 minimal model for every one of the allowed partition functions in the list obtained from Gannon's work [Gannon1996]. Kreuzer and Schellekens' conjecture that all simple current invariants can be obtained as orbifolds of the diagonal model, even when the extra assumption of higher-genus modular invariance is dropped, is confirmed in the case of the unitary N = 2 minimal models by simple counting arguments. We find a nice characterisation of the projection from the Hilbert space of a minimal model with k odd to its modular invariant subspace, and we present a new simple proof of the superconformal version of the Verlinde formula for the minimal models using simple currents. Finally we demonstrate a curious relation between the generating function of simple current invariants and the Riemann zeta function.zeige mehrzeige weniger
  • Um die unitären N = 2 minimalen Modelle (ohne Annahme der Raumzeit-Supersymmetrie) vollständig zu klassifizieren, wird durch Orbifolding gezeigt, dass jeder Kandidat für eine modular-invariante Zustandssumme einer solchen Theorie in der Tat die Zustandssumme eines minimalen Modells ist.

Volltext Dateien herunterladen

Metadaten exportieren

Statistik

Anzahl der Zugriffe auf dieses Dokument

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:Oliver Gray
URN:urn:nbn:de:bvb:384-opus-14514
Frontdoor-URLhttps://opus.bibliothek.uni-augsburg.de/opus4/1346
übersetzter Titel (Deutsch):Über die vollständige Klassifikation der unitären N = 2 minimalen superkonformen Feldtheorien
Betreuer:Katrin WendlandGND
Typ:Dissertation
Sprache:Englisch
Erstellungsdatum:22.01.2010
Veröffentlichende Institution:Universität Augsburg
Titel verleihende Institution:Universität Augsburg, Mathematisch-Naturwissenschaftlich-Technische Fakultät
Datum der Abschlussprüfung:03.08.2009
Datum der Freischaltung in OPUS:22.01.2010
Freies Schlagwort / Tag:conformal field theory; representation theory; supersymmetry
GND-Schlagwort:Konforme Feldtheorie; Supersymmetrie; Darstellungstheorie
Einrichtungen der Universität:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Lizenz (Deutsch):License LogoDeutsches Urheberrecht mit Print on Demand