Learning to Represent Multiple Object Classes on a Continuous Viewsphere

  • Existing work on multi-class object detection usually does not cover the entire viewsphere of each class in a continuous way: object classes from different viewpoints are either discretized into a few sparse viewpoints [12],or treated as entirely separate object classes [20]. In the present work, we describe an approach to multi-class object detection which allows sharing parts between different viewpoints and several classes while also learning a dense representation for the entire viewsphere of each class. We describe three learning approaches with different part sharing strategies in order to reduce the computational complexity of the learnt representation. Our approach uses synthetic training data to achieve a dense viewsphere coverage which also allows to perform object class and 3D pose estimation on single images.

Download full text files

Export metadata


Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Author:Johannes Schels, Joerg Liebelt, Rainer LienhartGND
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/1984
Series (Serial Number):Reports / Technische Berichte der Fakultät für Angewandte Informatik der Universität Augsburg (2012-07)
Publishing Institution:Universität Augsburg
Release Date:2012/08/01
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Maschinelles Lernen und Maschinelles Sehen
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):Deutsches Urheberrecht