Three-Dimensional Penrose Tilings and Self-Similarity

  • We investigate a 3-dimensional analogue of the Penrose tiling, a class of 3-dimensional aperiodic tilings whose edge vectors are the vertex vectors of a regular icosahedron. It arises by an equivariant projection of the unit lattice in euclidean 6-space with its natural representation of the icosahedral group, given by its action on the 6 icosahedral diagonals (with orientation). The tiling has a canonical subdivision by a similar tiling ("deflation"). We give an essentially local construction of the subdivision, independent of the actual place inside the tiling. In particular we show that the subdivision of the edges, faces and tiles (with some restriction) is unique.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Ruth Maria Katharina Dietl, Jost-Hinrich EschenburgGND
URN:urn:nbn:de:bvb:384-opus4-21059
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/2105
Series (Serial Number):Preprints des Instituts für Mathematik der Universität Augsburg (2012-12)
Type:Preprint
Language:English
Publishing Institution:Universität Augsburg
Release Date:2012/11/07
Tag:aperiodic tilings in 3D; quasicrystals; icosahedron; isozonohedra; deflation; subdivision
GND-Keyword:Parkettierung; Quasikristall; Penrose, Roger
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Lehrstuhl für Differentialgeometrie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Licence (German):License LogoDeutsches Urheberrecht