Numerical Solution of Stochastic Partial Differential Equations with Correlated Noise
- The aim of this paper is to investigate the numerical solution of stochastic partial differential equations (SPDEs) for a wider class of stochastic equations with colored noise instead of the usual space-time white noise. By applying Galerkin method for spatial discretization we obtain the rate of path-wise convergence in the uniform topology. Numerical examples illustrate the theoretically predicted convergence rate.
Author: | Minoo Kamrani, Dirk BlömkerORCiDGND |
---|---|
URN: | urn:nbn:de:bvb:384-opus4-22965 |
Frontdoor URL | https://opus.bibliothek.uni-augsburg.de/opus4/2296 |
Series (Serial Number): | Preprints des Instituts für Mathematik der Universität Augsburg (2013-05) |
Type: | Preprint |
Language: | English |
Year of first Publication: | 2013 |
Publishing Institution: | Universität Augsburg |
Release Date: | 2013/04/05 |
Tag: | Spektralgalerkin; Numerik partieller Differentialgleichungen stochastic partial differential equations; colored noise; spectral Galerkin approximation; time discretization; order of convergence; uniform bounds |
GND-Keyword: | Stochastische nichtlineare Differentialgleichung; Stochastische Analysis; Farbiges Rauschen; Stochastische partielle Differentialgleichung; Galerkin-Methode |
Institutes: | Mathematisch-Naturwissenschaftlich-Technische Fakultät |
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik | |
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Lehrstuhl für Nichtlineare Analysis | |
Dewey Decimal Classification: | 5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik |
Licence (German): | Deutsches Urheberrecht mit Print on Demand |