Extended transitive separation logic
- Separation logic (SL) is an extension of Hoare logic by operations and formulas to reason more flexibly about heap portions or, more concretely, about linked object/record structures. In the present paper we give an algebraic extension of SL at the data structure level. We define operations that, additionally to guaranteeing heap separation, make assumptions about the linking structure. Phenomena to be treated comprise reachability analysis, (absence of) sharing, cycle detection and preservation of substructures under destructive assignments. We demonstrate the practicality of this approach with examples of in-place list-reversal, tree rotation and threaded trees.
Author: | Han Hing Dang, Bernhard MöllerGND |
---|---|
URN: | urn:nbn:de:bvb:384-opus4-23703 |
Frontdoor URL | https://opus.bibliothek.uni-augsburg.de/opus4/2370 |
Series (Serial Number): | Reports / Technische Berichte der Fakultät für Angewandte Informatik der Universität Augsburg (2013-07) |
Publisher: | Institut für Informatik, Universität Augsburg |
Place of publication: | Augsburg |
Type: | Report |
Language: | English |
Year of first Publication: | 2013 |
Publishing Institution: | Universität Augsburg |
Release Date: | 2013/06/12 |
Tag: | seperation logic; reachability; sharing; strong separation; verification |
Institutes: | Fakultät für Angewandte Informatik |
Fakultät für Angewandte Informatik / Institut für Informatik | |
Fakultät für Angewandte Informatik / Institut für Informatik / Professur für Programmiermethodik und Multimediale Informationssysteme | |
Dewey Decimal Classification: | 0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik |
Licence (German): | Deutsches Urheberrecht |