The linear algebra of UTP (revised version)
- We show that the well-known algebra of matrices over a semiring can be used to reason conveniently about predicates as used in the Unifying Theories of Programming (UTP). This allows a simplified treatment of the designs of Hoare and He and the prescriptions of Dunne. In addition we connect the matrix approach with the theory of test and condition semirings and the modal operators diamond and box. This allows direct re-use of the results and proof techniques of Kleene algebra with tests for UTP as well as a connection to traditional wp/wlp semantics. Finally, we show that matrices of predicate transformers allow an even more streamlined treatment and removal of a restricting assumption on the underlying semirings.
Author: | Bernhard MöllerGND |
---|---|
URN: | urn:nbn:de:bvb:384-opus4-1911 |
Frontdoor URL | https://opus.bibliothek.uni-augsburg.de/opus4/240 |
Series (Serial Number): | Reports / Technische Berichte der Fakultät für Angewandte Informatik der Universität Augsburg (2006-10) |
Publisher: | Institut für Informatik, Universität Augsburg |
Place of publication: | Augsburg |
Type: | Report |
Language: | English |
Year of first Publication: | 2006 |
Publishing Institution: | Universität Augsburg |
Release Date: | 2006/06/19 |
GND-Keyword: | Axiomatische Semantik |
Institutes: | Fakultät für Angewandte Informatik |
Fakultät für Angewandte Informatik / Institut für Informatik | |
Fakultät für Angewandte Informatik / Institut für Informatik / Professur für Programmiermethodik und Multimediale Informationssysteme | |
Dewey Decimal Classification: | 0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik |