Feature algebra
- Based on experience from the hardware industry, product families have entered the software development process as well, since software developers often prefer not to build a single product but rather a family of similar products that share at least one common functionality while having well-identified variabilities. Such shared commonalities, also called features, reach from common hardware parts to software artefacts such as requirements, architectural properties, components, middleware, or code. We use idempotent semirings as the basis for a feature algebra that allows a formal treatment of the above notions as well as calculations with them. In particular models of feature algebra the elements are sets of products, i.e. product families. We extend the algebra to cover product lines, refinement, product development and product classification. Finally we briefly describe a prototype implementation of one particular model.
Author: | Peter HöfnerGND, Ridha Khedri, Bernhard MöllerGND |
---|---|
URN: | urn:nbn:de:bvb:384-opus4-1924 |
Frontdoor URL | https://opus.bibliothek.uni-augsburg.de/opus4/241 |
Series (Serial Number): | Reports / Technische Berichte der Fakultät für Angewandte Informatik der Universität Augsburg (2006-04) |
Publisher: | Institut für Informatik, Universität Augsburg |
Place of publication: | Augsburg |
Type: | Report |
Language: | English |
Year of first Publication: | 2006 |
Publishing Institution: | Universität Augsburg |
Release Date: | 2006/06/19 |
GND-Keyword: | Halbring; Idempotent |
Institutes: | Fakultät für Angewandte Informatik |
Fakultät für Angewandte Informatik / Institut für Informatik | |
Fakultät für Angewandte Informatik / Institut für Informatik / Professur für Programmiermethodik und Multimediale Informationssysteme | |
Dewey Decimal Classification: | 0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik |