Modal design algebra
- We give an algebraic model of (H3) designs of Hoare's and He's Unifying Theories of Programming. It is based on a variant of modal semirings, hence generalizing the original relational model. This makes the theory applicable to a wider class of settings, e.g., to algebras of sets of traces. Moreover, we set up the connection with the weakly and strongly demonic semantics of programs as discussed by a number of authors. This is done using commands (a,t) where a corresponds to the transition relation of a program and the condition t characterizes the input states from which termination is guaranteed. The commands form not only a semiring but even a Kleene and omega algebra. This is used to calculate closed expressions for the least and greatest fixed point semantics of the demonic while loop.
Author: | Walter Guttmann, Bernhard MöllerGND |
---|---|
URN: | urn:nbn:de:bvb:384-opus4-1957 |
Frontdoor URL | https://opus.bibliothek.uni-augsburg.de/opus4/244 |
Series (Serial Number): | Reports / Technische Berichte der Fakultät für Angewandte Informatik der Universität Augsburg (2005-15) |
Publisher: | Institut für Informatik, Universität Augsburg |
Place of publication: | Augsburg |
Type: | Report |
Language: | English |
Year of first Publication: | 2005 |
Publishing Institution: | Universität Augsburg |
Release Date: | 2006/06/19 |
GND-Keyword: | Axiomatische Semantik |
Institutes: | Fakultät für Angewandte Informatik |
Fakultät für Angewandte Informatik / Institut für Informatik | |
Fakultät für Angewandte Informatik / Institut für Informatik / Professur für Programmiermethodik und Multimediale Informationssysteme | |
Dewey Decimal Classification: | 0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik |