A Stable Limit Law for Recurrence Times of the Simple Random Walk on the Lattice Z2

  • We consider the random walk of a particle on the two-dimensional integer lattice starting at the origin and moving from each site (independently of the previous moves) with equal probabilities to any of the 4 nearest neighbours. When τi denotes the even number of steps between the (i-1)-st and i-th return to the origin, we shall prove that the geometric mean of τ1,...,τn divided by npi converges in distribution to some positive random variable having a logarithmic stable law. We also obtain a rate of this convergence and improve an asymptotic estimate of the tail probability of τ1 due to Erdös and Taylor (1960).

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Lothar HeinrichGND, Mirjam Appelt
URN:urn:nbn:de:bvb:384-opus4-24710
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/2471
Series (Serial Number):Preprints des Instituts für Mathematik der Universität Augsburg (2013-18)
Type:Preprint
Language:English
Publishing Institution:Universität Augsburg
Release Date:2013/09/25
Tag:simple random walk; square lattice; first return time; geometric mean; characteristic function; elliptic integral of first kind; asymptotic expansion; Esseen's inequality; mathematical constants
GND-Keyword:Irrfahrtsproblem; Elliptisches Integral; Geometrisches Mittel; Charakteristische Funktion; Asymptotische Abschätzung; Gitter <Mathematik>
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Lehrstuhl für Stochastik und ihre Anwendungen
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Licence (German):License LogoDeutsches Urheberrecht mit Print on Demand