Least reflexive points of relations
- Assume a partially ordered set (S,<=) and a relation R on S. We consider various sets of conditions in order to determine whether they ensure the existence of a least reflexive point, that is, a least x such that xRx. This is a generalization of the problem of determining the least fixed point of a function and the conditions under which it exists. To motivate the investigation we first present a theorem by Cai and Paige giving conditions under which iterating R from the bottom element necessarily leads to a minimal reflexive point; the proof is by a concise relationalgebraic calculation. Then, we assume a complete lattice and exhibit sufficient conditions, depending on whether R is partial or not, for the existence of a least reflexive point. Further results concern the structure of the set of all reflexive points; among other results we give a sufficient condition that these form a complete lattice, thus generalizing Tarski's classical result to the nondeterministic case.
Author: | Jules DesharnaisGND, Bernhard MöllerGND |
---|---|
URN: | urn:nbn:de:bvb:384-opus4-2080 |
Frontdoor URL | https://opus.bibliothek.uni-augsburg.de/opus4/257 |
Series (Serial Number): | Reports / Technische Berichte der Fakultät für Angewandte Informatik der Universität Augsburg (2002-13) |
Publisher: | Institut für Informatik, Universität Augsburg |
Place of publication: | Augsburg |
Type: | Report |
Language: | English |
Year of first Publication: | 2002 |
Publishing Institution: | Universität Augsburg |
Release Date: | 2006/06/20 |
Tag: | Least reflexive point; greatest reflexive point; fixed point; lattice; partial order; relation; inflationary relation |
Institutes: | Fakultät für Angewandte Informatik |
Fakultät für Angewandte Informatik / Institut für Informatik | |
Fakultät für Angewandte Informatik / Institut für Informatik / Professur für Programmiermethodik und Multimediale Informationssysteme | |
Dewey Decimal Classification: | 0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik |