On the Strong Brillinger-Mixing Property of Alpha-Determinantal Point Processes and Some Applications
- First we derive a representation formula for all cumulant density functions in terms of the non-negative definite kernel function C(x,y) defining an alpha-determinantal point process (DPP). Assuming absolute integrability of the function C_0(x) = C(o,x) we show that a stationary alpha-DPP with kernel function C_0(x) is "strongly" Brillinger-mixing implying, among others, that its tail-sigma-field is trivial. Second we use this mixing property to prove rates of normal convergence for shot-noise processes and sketch some applications to statistical second-order analysis of alpha-DPPs.
Author: | Lothar HeinrichGND |
---|---|
URN: | urn:nbn:de:bvb:384-opus4-33113 |
Frontdoor URL | https://opus.bibliothek.uni-augsburg.de/opus4/3311 |
Series (Serial Number): | Preprints des Instituts für Mathematik der Universität Augsburg (2015-12) |
Type: | Preprint |
Language: | English |
Publishing Institution: | Universität Augsburg |
Release Date: | 2015/09/24 |
Tag: | determinantal and permanental point process; trivial tail-sigma-field; exponential moment; shot-noise process; Berry-Esseen bound; multiparameter K-function; kernel-type product density estimator; goodness-of-fit test |
GND-Keyword: | Punktprozess; Anpassungstest; Schrotrauschen; Dichteschätzung; Berry-Esseen-Abschätzung |
Institutes: | Mathematisch-Naturwissenschaftlich-Technische Fakultät |
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik | |
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Lehrstuhl für Stochastik und ihre Anwendungen | |
Dewey Decimal Classification: | 5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik |
Licence (German): | ![]() |