Omega algebra, demonic refinement algebra and commands

  • Weak omega algebra and demonic refinement algebra are two ways of describing systems with finite and infinite iteration. We show that these independently introduced kinds of algebras can actually be defined in terms of each other. By defining modal operators on the underlying weak semiring, that result directly gives a demonic refinement algebra of commands. This yields models in which extensionality does not hold. Since in predicate-transformer models extensionality always holds, this means that the axioms of demonic refinement algebra do not characterise predicate-transformer models uniquely. The omega and the demonic refinement algebra of commands both utilise the convergence operator that is analogous to the halting predicate of modal μ-calculus. We show that the convergence operator can be defined explicitly in terms of infinite iteration and domain if and only if domain coinduction for infinite iteration holds.

Download full text files

Export metadata


Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Author:Peter HöfnerGND, Bernhard MöllerGND, Kim Solin
Frontdoor URL
Parent Title (English):Lecture Notes in Computer Science
Year of first Publication:2006
Publishing Institution:Universität Augsburg
Release Date:2017/07/21
First Page:222
Last Page:234
Relations and Kleene algebra in computer science: 9th International Conference on Relational Methods in Computer Science and 4th International Workshop on Applications of Kleene Algebra, RelMiCS/AKA 2006, Manchester, UK, August/September, 2006; proceedings
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Professur für Programmiermethodik und Multimediale Informationssysteme
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):Deutsches Urheberrecht