Modal design algebra

  • We give an algebraic model of the designs of UTP based on a variant of modal semirings, hence generalising the original relational model. This is intended to exhibit more clearly the algebraic principles behind UTP and to provide deeper insight into the general properties of designs, the program and specification operators, and refinement. Moreover, we set up a formal connection with general and total correctness of programs as discussed by a number of authors. Finally we show that the designs form a left semiring and even a Kleene and omega algebra. This is used to calculate closed expressions for the least and greatest fixed-point semantics of the demonic while loop that are simpler than the ones obtained from standard UTP theory and previous algebraic approaches.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Walter Guttmann, Bernhard MöllerGND
URN:urn:nbn:de:bvb:384-opus4-359395
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/35939
ISSN:0302-9743OPAC
Parent Title (English):Lecture Notes in Computer Science
Publisher:Springer
Type:Article
Language:English
Year of first Publication:2006
Publishing Institution:Universität Augsburg
Release Date:2017/07/21
Volume:4010
First Page:236
Last Page:256
DOI:https://doi.org/10.1007/11768173_14
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Professur für Programmiermethodik und Multimediale Informationssysteme
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):Deutsches Urheberrecht