Mixing Properties of Stationary Poisson Cylinder Models

  • We study a particular class of stationary random closed sets in R^d called Poisson k-cylinder models (short: P-k-CM's) for k=1,...,d-1. We show that all P-k-CM's are weakly mixing and possess long-range correlations. Further, we derive necessary and sufficient conditions in terms of the directional distribution of the cylinders under which the corresponding P-k-CM is mixing. Regarding the P-(d-1)-CM as union of "thick hyperplanes" which generates a stationary process of polytopes we prove that the distribution of the polytope containing the origin does not depend on the thickness of the hyperplanes.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Christian Bräu, Lothar HeinrichGND
URN:urn:nbn:de:bvb:384-opus4-37694
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/3769
Series (Serial Number):Preprints des Instituts für Mathematik der Universität Augsburg (2016-03)
Type:Preprint
Language:English
Publishing Institution:Universität Augsburg
Release Date:2016/06/15
Tag:random closed set; hitting functional; random k-cylinder; independently marked Poisson process; tail sigma-algebra; typical cell; zero cell
GND-Keyword:Zufällige Menge; Sigma-Algebra; Poisson-Prozess; Stochastische Geometrie
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Lehrstuhl für Stochastik und ihre Anwendungen
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Licence (German):Deutsches Urheberrecht mit Print on Demand