Normal design algebra

  • We generalise the designs of the Unifying Theories of Programming (UTP) by defining them as matrices over semirings with ideals. This clarifies the algebraic structure of designs and considerably simplifies reasoning about them, for example, since they form a Kleene and omega algebra and a test semiring. We apply our framework to investigate symmetric linear recursion and its relation to tail-recursion. This substantially involves Kleene and omega algebra as well as additional algebraic formulations of determinacy, invariants, domain, pre-image, convergence and Noetherity. Due to the uncovered algebraic structure of UTP designs, all our general results also directly apply to UTP.

Download full text files

Export metadata


Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Author:Walter Guttmann, Bernhard MöllerGND
Frontdoor URL
Parent Title (English):The Journal of Logic and Algebraic Programming
Year of first Publication:2010
Publishing Institution:Universität Augsburg
Release Date:2018/07/25
First Page:144
Last Page:173
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Professur für Programmiermethodik und Multimediale Informationssysteme
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):CC-BY-NC-ND 4.0: Creative Commons: Namensnennung - Nicht kommerziell - Keine Bearbeitung (mit Print on Demand)