Skyrmion robustness in noncentrosymmetric magnets with axial symmetry: the role of anisotropy and tilted magnetic fields

  • We investigate the stability of Néel skyrmions against tilted magnetic fields in polar magnets with uniaxial anisotropy ranging from easy-plane to easy-axis type. We construct the corresponding phase diagrams and investigate the internal structure of skewed skyrmions with displaced cores. We find that moderate easy-plane anisotropy increases the stability range of Néel skyrmions for fields along the symmetry axis, while moderate easy-axis anisotropy enhances their robustness against tilted magnetic fields. We stress that the direction along which the skyrmion cores are shifted depends on the symmetry of the underlying crystal lattice. The cores of Néel skyrmions, realized in polar magnets with Cnv symmetry, are displaced either along or opposite to the off-axis (in-plane) component of the magnetic field depending on the rotation sense of the magnetization, dictated by the sign of the Dzyaloshinskii constant. The core shift of antiskyrmions, present in noncentrosymmetric magnets withWe investigate the stability of Néel skyrmions against tilted magnetic fields in polar magnets with uniaxial anisotropy ranging from easy-plane to easy-axis type. We construct the corresponding phase diagrams and investigate the internal structure of skewed skyrmions with displaced cores. We find that moderate easy-plane anisotropy increases the stability range of Néel skyrmions for fields along the symmetry axis, while moderate easy-axis anisotropy enhances their robustness against tilted magnetic fields. We stress that the direction along which the skyrmion cores are shifted depends on the symmetry of the underlying crystal lattice. The cores of Néel skyrmions, realized in polar magnets with Cnv symmetry, are displaced either along or opposite to the off-axis (in-plane) component of the magnetic field depending on the rotation sense of the magnetization, dictated by the sign of the Dzyaloshinskii constant. The core shift of antiskyrmions, present in noncentrosymmetric magnets with D2d symmetry, depends on the in-plane orientation of the magnetic field and can be parallel, antiparallel, or perpendicular to it. We argue that the role of anisotropy in magnets with axially symmetric crystal structure is different from that in cubic helimagnets. Our results can be applied to address recent experiments on polar magnets with C3v symmetry, GaV4S8 and GaV4Se8, and Mn1.4Pt0.9Pd0.1Sn with D2d symmetry.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:A. O. Leonov, István KézsmárkiORCiDGND
URN:urn:nbn:de:bvb:384-opus4-436440
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/43644
ISSN:2469-9950OPAC
ISSN:2469-9969OPAC
Parent Title (English):Physical Review B
Publisher:American Physical Society (APS)
Type:Article
Language:English
Year of first Publication:2017
Publishing Institution:Universität Augsburg
Release Date:2018/11/16
Volume:96
Issue:21
First Page:214413
DOI:https://doi.org/10.1103/physrevb.96.214413
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik / Lehrstuhl für Experimentalphysik V
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Licence (German):Deutsches Urheberrecht