Adaptive path-following primal dual interior point methods for shape optimization of linear and nonlinear Stokes flow problems

  • We are concerned with structural optimization problems in CFD where the state variables are supposed to satisfy a linear or nonlinear Stokes system and the design variables are subject to bilateral pointwise constraints. Within a primal-dual setting, we suggest an all-at-once approach based on interior-point methods. The discretization is taken care of by Taylor-Hood elements with respect to a simplicial triangulation of the computational domain. The efficient numerical solution of the discretized problem relies on adaptive path-following techniques featuring a predictor-corrector scheme with inexact Newton solves of the KKT system by means of an iterative null-space approach. The performance of the suggested method is documented by several illustrative numerical examples.

Download full text files

Export metadata


Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Author:Ronald H. W. HoppeORCiDGND, Christopher Linsenmann, Harbir AntilGND
Frontdoor URL
Series (Serial Number):Preprints des Instituts für Mathematik der Universität Augsburg (2007-18)
Publishing Institution:Universität Augsburg
Contributing Corporation:Department of Mathematics, University of Houston
Release Date:2007/07/02
Tag:shape optimization; Stokes flow; interior point methods; adaptive path following
GND-Keyword:Deterministische Optimierung; Innere-Punkte-Methode; Gestaltoptimierung; Numerische Strömungssimulation
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Lehrstuhl für Numerische Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik