Modeling and simulation of piezoelectrically agitated acoustic streaming on microfluidic biochips

  • Biochips, of the microarray type, are fast becoming the default tool for combinatorial chemical and biological analysis in environmental and medical studies. Programmable biochips are miniaturized biochemical labs that are physically and/or electronically controllable. The technology combines digital photolithography, microfluidics and chemistry. The precise positioning of the samples (e.g., DNA solutes or proteins) on the surface of the chip in pico liter to nano liter volumes can be done either by means of external forces (active devices) or by specific geometric patterns (passive devices). The active devices which will be considered here are nano liter fluidic biochips where the core of the technology are nano pumps featuring surface acoustic waves generated by electric pulses of high frequency. These waves propagate like a miniaturized earthquake, enter the fluid filled channels on top of the chip and cause an acoustic streaming in the fluid which provides the transport of theBiochips, of the microarray type, are fast becoming the default tool for combinatorial chemical and biological analysis in environmental and medical studies. Programmable biochips are miniaturized biochemical labs that are physically and/or electronically controllable. The technology combines digital photolithography, microfluidics and chemistry. The precise positioning of the samples (e.g., DNA solutes or proteins) on the surface of the chip in pico liter to nano liter volumes can be done either by means of external forces (active devices) or by specific geometric patterns (passive devices). The active devices which will be considered here are nano liter fluidic biochips where the core of the technology are nano pumps featuring surface acoustic waves generated by electric pulses of high frequency. These waves propagate like a miniaturized earthquake, enter the fluid filled channels on top of the chip and cause an acoustic streaming in the fluid which provides the transport of the samples. The mathematical model represents a multiphysics problem consisting of the piezoelectric equations coupled with multiscale compressible Navier-Stokes equations that have to be treated by an appropriate homogenization approach. We discuss the modeling approach and present algorithmic tools for numerical simulations as well as visualizations of simulation results.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Harbir AntilGND, Andreas Gantner, Ronald H. W. HoppeGND, Daniel KösterGND, Kunibert G. SiebertGND, Achim WixforthORCiDGND
URN:urn:nbn:de:bvb:384-opus4-4420
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/548
Series (Serial Number):Preprints des Instituts für Mathematik der Universität Augsburg (2007-21)
Type:Preprint
Language:English
Publishing Institution:Universität Augsburg
Contributing Corporation:Department of Mathematics, University of Houston
Release Date:2007/07/04
Tag:microfluidic biochips; surface acoustic waves; acoustic streaming; multiphysics; multiscale problem; homogenization
GND-Keyword:Biomathematik; Biochip; Mikrofluidik; Akustische Oberflächenwelle; Piezoelektrizität
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Lehrstuhl für Numerische Mathematik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik / Lehrstuhl für Experimentalphysik I
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik