An efficient model for mobile network slice embedding under resource uncertainty

  • The fifth generation (5G) of mobile networks will support several new use cases, like the Internet of Things (IoT), massive Machine Type Communication (mMTC) and Ultra-Reliable and Low Latency Communication (URLLC) as well as significant improvements of the conventional Mobile Broadband (MBB) use case. End-to-end network slicing is a key-feature of 5G since it allows to share and at the same time isolate resources between several different use cases as well as between tenants by providing logical network. The virtual separation of the network slices on a common end-to-end mobile network infrastructure enables an efficient usage of the underlying network resources and provides means for security and safety related isolation of the defined logical networks. A much-discussed challenge is the reuse or overbooking of resources guaranteed by contract. However, there is a consensus that over-provisioning of mobile communication bands is economically infeasible and a certain risk of networkThe fifth generation (5G) of mobile networks will support several new use cases, like the Internet of Things (IoT), massive Machine Type Communication (mMTC) and Ultra-Reliable and Low Latency Communication (URLLC) as well as significant improvements of the conventional Mobile Broadband (MBB) use case. End-to-end network slicing is a key-feature of 5G since it allows to share and at the same time isolate resources between several different use cases as well as between tenants by providing logical network. The virtual separation of the network slices on a common end-to-end mobile network infrastructure enables an efficient usage of the underlying network resources and provides means for security and safety related isolation of the defined logical networks. A much-discussed challenge is the reuse or overbooking of resources guaranteed by contract. However, there is a consensus that over-provisioning of mobile communication bands is economically infeasible and a certain risk of network overload is acceptable for the majority of the 5G use cases. In this paper, an efficient model for mobile network slice embedding is presented which enables an informed decision on network slice admission. This is based on the guaranteed end-to-end mobile network resources that have to be provided on the one hand and the capacities and capabilities of the underlying network infrastructure on the other hand. The network slice embedding problem is solved in form of a Mixed Integer Linear Program with an uncertainty-aware objective function. Subsequently, the confidence in the availability of each resource is analyzed.show moreshow less

Download full text files

  • 63991.pdfeng
    (208KB)

    Postprint. © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Andrea FendtGND, Christian Mannweiler, Lars Christoph Schmelz, Bernhard BauerORCiDGND
URN:urn:nbn:de:bvb:384-opus4-639918
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/63991
URL:http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8877372&isnumber=8877095
Parent Title (English):2019 16th International Symposium on Wireless Communication Systems (ISWCS), 27-30 Aug. 2019, Oulu, Finland
Publisher:IEEE
Place of publication:Piscataway, NJ
Editor:Pekka Pirinen
Type:Part of a Book
Language:English
Year of first Publication:2019
Publishing Institution:Universität Augsburg
Release Date:2020/03/04
Tag:5G mobile communication; Uncertainty; Resource management; Network Slice; Virtual Network Embedding
First Page:602
Last Page:606
DOI:https://doi.org/10.1109/ISWCS.2019.8877372
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Software & Systems Engineering
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Softwaretechnik
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Softwaretechnik / Professur Softwaremethodik für verteilte Systeme
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):Deutsches Urheberrecht