Worldsheet Instantons and Torsion Curves

  • We study aspects of worldsheet instantons relevant to a heterotic standard model. The non-simply connected Calabi-Yau threefold used admits Z_3 x Z_3 Wilson lines, and a more detailed investigation shows that the homology classes of curves are H_2(X,Z)=Z^3+Z_3+Z_3. We compute the genus-0 prepotential, this is the first explicit calculation of the Gromov-Witten invariants of homology classes with torsion (finite subgroups). In particular, some curve classes contain only a single instanton. This ensures that the Beasley-Witten cancellation of instanton contributions cannot happen on this (non-toric) Calabi-Yau threefold.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Volker Braun, Maximilian Kreuzer, Burt Ovrut, Emanuel ScheideggerGND
URN:urn:nbn:de:bvb:384-opus4-5379
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/681
Series (Serial Number):Preprints des Instituts für Mathematik der Universität Augsburg (2008-22)
Type:Preprint
Language:English
Publishing Institution:Universität Augsburg
Release Date:2008/05/14
Tag:String theory; algebraic geometry
GND-Keyword:Stringtheorie; algebraische Geometrie; Gromov-Witten-Invariante; Calabi-Yau-Mannigfaltigkeit
Source:http://arxiv.org/abs/0801.4154
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik