Worldsheet Instantons and Torsion Curves
- We study aspects of worldsheet instantons relevant to a heterotic standard model. The non-simply connected Calabi-Yau threefold used admits Z_3 x Z_3 Wilson lines, and a more detailed investigation shows that the homology classes of curves are H_2(X,Z)=Z^3+Z_3+Z_3. We compute the genus-0 prepotential, this is the first explicit calculation of the Gromov-Witten invariants of homology classes with torsion (finite subgroups). In particular, some curve classes contain only a single instanton. This ensures that the Beasley-Witten cancellation of instanton contributions cannot happen on this (non-toric) Calabi-Yau threefold.
Author: | Volker Braun, Maximilian Kreuzer, Burt Ovrut, Emanuel ScheideggerGND |
---|---|
URN: | urn:nbn:de:bvb:384-opus4-5379 |
Frontdoor URL | https://opus.bibliothek.uni-augsburg.de/opus4/681 |
Series (Serial Number): | Preprints des Instituts für Mathematik der Universität Augsburg (2008-22) |
Type: | Preprint |
Language: | English |
Publishing Institution: | Universität Augsburg |
Release Date: | 2008/05/14 |
Tag: | String theory; algebraic geometry |
GND-Keyword: | Stringtheorie; algebraische Geometrie; Gromov-Witten-Invariante; Calabi-Yau-Mannigfaltigkeit |
Source: | http://arxiv.org/abs/0801.4154 |
Institutes: | Mathematisch-Naturwissenschaftlich-Technische Fakultät |
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik | |
Dewey Decimal Classification: | 5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik |