A generic human–machine annotation framework based on dynamic cooperative learning

Download full text files

  • 71013.pdfeng
    (27614KB)

    Postprint. © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Yue Zhang, Andrea Michi, Johannes Wagner, Elisabeth AndréORCiDGND, Björn SchullerORCiDGND, Felix Weninger
URN:urn:nbn:de:bvb:384-opus4-710138
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/71013
ISSN:2168-2267OPAC
ISSN:2168-2275OPAC
Parent Title (English):IEEE Transactions on Cybernetics
Publisher:Institute of Electrical and Electronics Engineers (IEEE)
Place of publication:New York, NY
Type:Article
Language:English
Year of first Publication:2020
Publishing Institution:Universität Augsburg
Release Date:2020/02/20
Tag:Control and Systems Engineering; Human-Computer Interaction; Electrical and Electronic Engineering; Software; Information Systems; Computer Science Applications
Volume:50
Issue:3
First Page:1230
Last Page:1239
DOI:https://doi.org/10.1109/tcyb.2019.2901499
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Menschzentrierte Künstliche Intelligenz
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Embedded Intelligence for Health Care and Wellbeing
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):Deutsches Urheberrecht