Virtual Timing Isolation Safety-Net for Multicore Processors

  • Multicore processors promise to offer the performance as well as the reduced space, weight and power needed by future aircrafts. However, commercial off-the-shelf multicore processors suffer from timing interferences between cores which complicates applying them in hard real-time systems like avionic applications. In this thesis, a safety-net system is proposed which enables a virtual timing isolation of applications running on one core from all other cores. The technique is based on hardware external to the multicore processor and completely transparent to the applications, i.e. no modification of the observed software is necessary. The basic idea is to apply a single-core execution based worst-case execution time analysis and to accept a predefined slowdown during multicore execution. If the slowdown exceeds the acceptable bounds, interferences will be reduced by controlling the behavior of low-critical cores to keep the main application’s progress inside the givenMulticore processors promise to offer the performance as well as the reduced space, weight and power needed by future aircrafts. However, commercial off-the-shelf multicore processors suffer from timing interferences between cores which complicates applying them in hard real-time systems like avionic applications. In this thesis, a safety-net system is proposed which enables a virtual timing isolation of applications running on one core from all other cores. The technique is based on hardware external to the multicore processor and completely transparent to the applications, i.e. no modification of the observed software is necessary. The basic idea is to apply a single-core execution based worst-case execution time analysis and to accept a predefined slowdown during multicore execution. If the slowdown exceeds the acceptable bounds, interferences will be reduced by controlling the behavior of low-critical cores to keep the main application’s progress inside the given bounds. Measuring the progress of the applications running on the main core is performed by tracking the application’s fingerprint. A fingerprint is created by extraction of the performance counters of the critical core in very small timesteps which results in a characteristic curve for every execution of a periodic program. In standalone mode, without any running applications on the other cores, a model of an application is created by clustering and combining the extracted curves. During runtime, the extracted performance counter values are compared to the model to determine the progress of the critical application. In case the progress of an application is unacceptably delayed, the cores creating the interferences are throttled. The interference creating cores are determined by the accesses of the respective cores to the shared resources. A controller that takes the progress of a critical application as well as the time until the final deadline into account throttles the low priority cores. Throttling is either performed by frequency scaling of the interfering cores or by halt and continue with a pulse width modulation scheme. The complete safety-net system was evaluated on a TACLeBench benchmark running on an NXP P4080 multicore processor observed by a Xilinx FPGA implementing a MicroBlaze soft-core microcontroller. The results show that the progress can be measured by the fingerprinting with a final deviation of less than 1% for a TACLeBench execution with running opponent cores and indicate the non-intrusiveness of the approach. Several experiments are conducted to demonstrate the effectiveness of the different throttling mechanisms. Evaluations using a real-world avionic application show that the approach can be applied to integrated modular avionic applications. The safety-net does not ensure robust partitioning in the conventional meaning. The applications on the different cores can influence each other in the timing domain, but the external safety-net ensures that the interference on the high critical application is low enough to keep the timing. This allows for an efficient utilization of the multicore processor. Every critical application is treated individually, and by relying on individual models recorded in standalone mode, the critical as well as the non-critical applications running on the other cores can be exchanged without recreating a fingerprint model. This eases the porting of legacy applications to the multicore processor and allows the exchange of applications without recertification.show moreshow less
  • Der Einsatz von Multicore Prozessoren in Avioniksystemen verspricht sowohl die Performancesteigerung als auch den reduzierten Platz-, Gewichts- und Energieverbrauch, der zur Realisierung von zukünftigen Flugzeugen benötigt wird. Die Verwendung von seriengefertigten (COTS) Multicore Prozessoren in sicherheitskritischen Echtzeitsystemen ist jedoch sehr komplex, da eine gegenseitige zeitliche Beeinflussung der Anwendungen auf den unterschiedlichen Kernen nicht ausgeschlossen werden kann. In dieser Arbeit wird ein Konzept vorgestellt, das eine virtuelle zeitliche Trennung der Anwendungen, die auf einem Prozessorkern ausgeführt werden, von denen der übrigen Kerne ermöglicht. Die Grundidee besteht darin, eine auf einer Single-Core-Ausführung basierende Laufzeitanalyse (WCET) durchzuführen und eine vordefinierte Verlangsamung während der Multicore-Ausführung zu akzeptieren. Wenn die Verlangsamung die zulässige Grenze überschreitet, wird das Verhalten niedrigkritischer Kerne so gesteuert, dassDer Einsatz von Multicore Prozessoren in Avioniksystemen verspricht sowohl die Performancesteigerung als auch den reduzierten Platz-, Gewichts- und Energieverbrauch, der zur Realisierung von zukünftigen Flugzeugen benötigt wird. Die Verwendung von seriengefertigten (COTS) Multicore Prozessoren in sicherheitskritischen Echtzeitsystemen ist jedoch sehr komplex, da eine gegenseitige zeitliche Beeinflussung der Anwendungen auf den unterschiedlichen Kernen nicht ausgeschlossen werden kann. In dieser Arbeit wird ein Konzept vorgestellt, das eine virtuelle zeitliche Trennung der Anwendungen, die auf einem Prozessorkern ausgeführt werden, von denen der übrigen Kerne ermöglicht. Die Grundidee besteht darin, eine auf einer Single-Core-Ausführung basierende Laufzeitanalyse (WCET) durchzuführen und eine vordefinierte Verlangsamung während der Multicore-Ausführung zu akzeptieren. Wenn die Verlangsamung die zulässige Grenze überschreitet, wird das Verhalten niedrigkritischer Kerne so gesteuert, dass der Fortschritt der Hauptanwendung innerhalb der Deadlines bleibt. Die Bestimmung des Fortschritts der kritischen Anwendungen erfolgt durch das Verfolgen eines sogenannten Fingerprints. Ein Fingerprint wird durch Auslesen der Performance Counter des kritischen Kerns in sehr kleinen Zeitschritten erzeugt, was zu einer charakteristischen Kurve für jede Ausführung eines periodischen Programms führt. Ein Modell einer Anwendung wird erstellt, indem die extrahierten Kurven gruppiert und kombiniert werden. Während der Laufzeit werden die ausgelesenen Werte mit dem Modell verglichen, um den Fortschritt zu bestimmen. Falls die zeitliche Ausführung einer ktitischen Anwendung zu stark verzögert wird, werden die Kerne gedrosselt, welche die Störungen verursachen. Das Konzept wurde mit einem TACLeBench-Benchmark evaluiert, der auf einem NXP P4080 Multicore Prozessor ausgefüht, und von einem Xilinx-FPGA beobachtet wurde. Es konnte gezeigt werden, dass der Fortschritt durch den Fingerprint mit einer endgültigen Abweichung von weniger als 1% für eine TACLeBench-Ausführung mit laufenden konkurrierenden Kernen gemessen werden kann. Die Evaluation mit einer realen Avionik-Anwendung zeigte, dass das Konzept für integrierte modulare Avionik-Anwendungen (IMA) genutzt werden kann. Der Ansatz gewährleistet keine robuste Partitionierung im herkömmlichen Sinne. Die Anwendungen auf den verschiedenen Kernen können sich zeitlich gegenseitig beeinflussen, aber ein externes Sicherheitsnetz stellt sicher, dass die Verlangsamung der hochkritischen Anwendung niedrig genug ist, um die Deadlines zu halten. Dies ermöglicht eine effiziente Auslastung des Multicore Prozessors. Außerdem wird jede kritische Anwendung einzeln behandelt und verfügt über ein individuelles Modell. Somit können die kritischen und nicht kritischen Anwendungen, die auf den anderen Kernen ausgeführt werden, ausgetauscht werden, ohne ein Modell neu zu erstellen. Dies vereinfacht die Portierung von bestehenden Anwendungen auf Multicore Prozessoren und ermöglicht den Austausch von Anwendungen ohne eine erneute Zertifizierung.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Johannes Freitag
URN:urn:nbn:de:bvb:384-opus4-762723
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/76272
Advisor:Theo Ungerer
Type:Doctoral Thesis
Language:English
Year of first Publication:2020
Publishing Institution:Universität Augsburg
Granting Institution:Universität Augsburg, Fakultät für Angewandte Informatik
Date of final exam:2020/03/09
Release Date:2020/08/06
GND-Keyword:Echtzeitsystem; Zeitgesteuertes System; Mehrkernprozessor; Worst-Case-Laufzeit
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Systemnahe Informatik und Kommunikationssysteme
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):Deutsches Urheberrecht