Deep learning for mobile mental health: challenges and recent advances

Download full text files

  • 91112.pdfeng
    (298KB)

    Postprint. © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Jing HanORCiD, Zixing Zhang, Cecilia Mascolo, Elisabeth AndréORCiDGND, Jianhua Tao, Ziping Zhao, Björn W. SchullerORCiDGND
URN:urn:nbn:de:bvb:384-opus4-911123
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/91112
ISSN:1053-5888OPAC
ISSN:1558-0792OPAC
Parent Title (English):IEEE Signal Processing Magazine
Publisher:Institute of Electrical and Electronics Engineers (IEEE)
Place of publication:Piscataway, NJ
Type:Article
Language:English
Year of first Publication:2021
Publishing Institution:Universität Augsburg
Release Date:2021/12/06
Tag:Applied Mathematics; Electrical and Electronic Engineering; Signal Processing
Volume:38
Issue:6
First Page:96
Last Page:105
DOI:https://doi.org/10.1109/msp.2021.3099293
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Multimodale Mensch-Technik Interaktion (Human Centered Multimedia)
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Embedded Intelligence for Health Care and Wellbeing
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):Deutsches Urheberrecht