Facial emotion recognition using deep residual networks in real-world environments

  • Automatic affect recognition using visual cues is an important task towards a complete interaction between humans and machines. Applications can be found in tutoring systems and human computer interaction. A critical step towards that direction is facial feature extraction. In this paper, we propose a facial feature extractor model trained on an in-the-wild and massively collected video dataset provided by the RealEyes company. The dataset consists of a million labelled frames and 2,616 thousand subjects. As temporal information is important to the emotion recognition domain, we utilise LSTM cells to capture the temporal dynamics in the data. To show the favourable properties of our pre-trained model on modelling facial affect, we use the RECOLA database, and compare with the current state-of-the-art approach. Our model provides the best results in terms of concordance correlation coefficient.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Panagiotis Tzirakis, Dénes Boros, Elnar Hajiyev, Björn W. SchullerORCiDGND
URN:urn:nbn:de:bvb:384-opus4-914822
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/91482
Parent Title (English):arXiv
Type:Preprint
Language:English
Date of Publication (online):2021/12/21
Year of first Publication:2021
Publishing Institution:Universität Augsburg
Release Date:2021/12/22
First Page:arXiv:2111.02717
DOI:https://doi.org/10.48550/arXiv.2111.02717
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Embedded Intelligence for Health Care and Wellbeing
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)