EIHW-MTG: second DiCOVA challenge system report
- This work presents an outer product-based approach to fuse the embedded representations generated from the spectrograms of cough, breath, and speech samples for the automatic detection of COVID-19. To extract deep learnt representations from the spectrograms, we compare the performance of a CNN trained from scratch and a ResNet18 architecture fine-tuned for the task at hand. Furthermore, we investigate whether the patients' sex and the use of contextual attention mechanisms is beneficial. Our experiments use the dataset released as part of the Second Diagnosing COVID-19 using Acoustics (DiCOVA) Challenge. The results suggest the suitability of fusing breath and speech information to detect COVID-19. An Area Under the Curve (AUC) of 84.06% is obtained on the test partition when using a CNN trained from scratch with contextual attention mechanisms. When using the ResNet18 architecture for feature extraction, the baseline model scores the highest performance with an AUC of 84.26%.
| Author: | Adria Mallol-RagoltaORCiDGND, Helena Cuesta, Emilia Gómez, Björn SchullerORCiDGND |
|---|---|
| URN: | urn:nbn:de:bvb:384-opus4-914961 |
| Frontdoor URL | https://opus.bibliothek.uni-augsburg.de/opus4/91496 |
| Parent Title (English): | arXiv |
| Type: | Preprint |
| Language: | English |
| Date of Publication (online): | 2021/12/21 |
| Year of first Publication: | 2021 |
| Publishing Institution: | Universität Augsburg |
| Release Date: | 2021/12/22 |
| First Page: | arXiv:2110.09239 |
| DOI: | https://doi.org/10.48550/arXiv.2110.09239 |
| Institutes: | Fakultät für Angewandte Informatik |
| Fakultät für Angewandte Informatik / Institut für Informatik | |
| Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Embedded Intelligence for Health Care and Wellbeing | |
| Dewey Decimal Classification: | 0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik |
| Licence (German): | CC-BY-NC-SA 4.0: Creative Commons: Namensnennung - Nicht kommerziell - Weitergabe unter gleichen Bedingungen |



