EIHW-MTG: second DiCOVA challenge system report

  • This work presents an outer product-based approach to fuse the embedded representations generated from the spectrograms of cough, breath, and speech samples for the automatic detection of COVID-19. To extract deep learnt representations from the spectrograms, we compare the performance of a CNN trained from scratch and a ResNet18 architecture fine-tuned for the task at hand. Furthermore, we investigate whether the patients' sex and the use of contextual attention mechanisms is beneficial. Our experiments use the dataset released as part of the Second Diagnosing COVID-19 using Acoustics (DiCOVA) Challenge. The results suggest the suitability of fusing breath and speech information to detect COVID-19. An Area Under the Curve (AUC) of 84.06% is obtained on the test partition when using a CNN trained from scratch with contextual attention mechanisms. When using the ResNet18 architecture for feature extraction, the baseline model scores the highest performance with an AUC of 84.26%.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Adria Mallol-RagoltaORCiDGND, Helena Cuesta, Emilia Gómez, Björn SchullerORCiDGND
URN:urn:nbn:de:bvb:384-opus4-914961
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/91496
Parent Title (English):arXiv
Type:Preprint
Language:English
Year of first Publication:2021
Publishing Institution:Universität Augsburg
Release Date:2021/12/22
First Page:arXiv:2110.09239
DOI:https://doi.org/10.48550/arXiv.2110.09239
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Embedded Intelligence for Health Care and Wellbeing
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):CC-BY-NC-SA 4.0: Creative Commons: Namensnennung - Nicht kommerziell - Weitergabe unter gleichen Bedingungen (mit Print on Demand)