Generating and protecting against adversarial attacks for deep speech-based emotion recognition models

Download full text files

  • 91704.pdfeng
    (482KB)

    Postprint. © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Zhao RenORCiD, Alice BairdGND, Jing HanORCiD, Zixing Zhang, Björn SchullerORCiDGND
URN:urn:nbn:de:bvb:384-opus4-917044
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/91704
ISBN:978-1-5090-6632-2OPAC
Parent Title (English):International Conference on Acoustics, Speech and Signal Processing (ICASSP 2020, Barcelona, Spain, 4-8 May 2020
Publisher:IEEE
Place of publication:New York, NY
Editor:Ana I. Pérez-Neira, Xavier Mestre, Pau Closas, Monica Bugallo
Type:Part of a Book
Language:English
Year of first Publication:2020
Publishing Institution:Universität Augsburg
Release Date:2022/01/27
First Page:7184
Last Page:7188
DOI:https://doi.org/10.1109/icassp40776.2020.9054087
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Embedded Intelligence for Health Care and Wellbeing
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):Deutsches Urheberrecht