Germline variants of CYBA and TRPM4 predispose to familial colorectal cancer

  • Simple Summary Whole-genome sequencing and bioinformatics analysis on unique colorectal cancer families revealed two attractive candidate predisposition genes, CYBA and TRPM4, each with a loss-of-function variant. Supported by our functional studies, we suggest that the two gene defects mechanistically involve intestinal barrier integrity through reactive oxygen species and mucus biology, which converges in chronic bowel inflammation, a known risk factor for colorectal cancer. Abstract Familial colorectal cancer (CRC) is only partially explained by known germline predisposing genes. We performed whole-genome sequencing in 15 Polish families of many affected individuals, without mutations in known CRC predisposing genes. We focused on loss-of-function variants and functionally characterized them. We identified a frameshift variant in the CYBA gene (c.246delC) in one family and a splice site variant in the TRPM4 gene (c.25–1 G > T) inSimple Summary Whole-genome sequencing and bioinformatics analysis on unique colorectal cancer families revealed two attractive candidate predisposition genes, CYBA and TRPM4, each with a loss-of-function variant. Supported by our functional studies, we suggest that the two gene defects mechanistically involve intestinal barrier integrity through reactive oxygen species and mucus biology, which converges in chronic bowel inflammation, a known risk factor for colorectal cancer. Abstract Familial colorectal cancer (CRC) is only partially explained by known germline predisposing genes. We performed whole-genome sequencing in 15 Polish families of many affected individuals, without mutations in known CRC predisposing genes. We focused on loss-of-function variants and functionally characterized them. We identified a frameshift variant in the CYBA gene (c.246delC) in one family and a splice site variant in the TRPM4 gene (c.25–1 G > T) in another family. While both variants were absent or extremely rare in gene variant databases, we identified four additional Polish familial CRC cases and two healthy elderly individuals with the CYBA variant (odds ratio 2.46, 95% confidence interval 0.48–12.69). Both variants led to a premature stop codon and to a truncated protein. Functional characterization of the variants showed that knockdown of CYBA or TRPM4 depressed generation of reactive oxygen species (ROS) in LS174T and HT-29 cell lines. Knockdown of TRPM4 resulted in decreased MUC2 protein production. CYBA encodes a component in the NADPH oxidase system which generates ROS and controls, e.g., bacterial colonization in the gut. Germline CYBA variants are associated with early onset inflammatory bowel disease, supported with experimental evidence on loss of intestinal mucus barrier function due to ROS deficiency. TRPM4 encodes a calcium-activated ion channel, which, in a human colonic cancer cell line, controls calcium-mediated secretion of MUC2, a major component of intestinal mucus barrier. We suggest that the gene defects in CYBA and TRPM4 mechanistically involve intestinal barrier integrity through ROS and mucus biology, which converges in chronic bowel inflammation.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Lizhen Zhu, Beiping Miao, Dagmara Dymerska, Magdalena Kuswik, Elena Bueno-Martínez, Lara Sanoguera-Miralles, Eladio A. Velasco, Nagarajan Paramasivam, Matthias SchlesnerORCiDGND, Abhishek Kumar, Ying Yuan, Jan Lubinski, Obul Reddy Bandapalli, Kari Hemminki, Asta Försti
URN:urn:nbn:de:bvb:384-opus4-924982
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/92498
ISSN:2072-6694OPAC
Parent Title (English):Cancers
Publisher:MDPI
Type:Article
Language:English
Date of first Publication:2022/01/28
Publishing Institution:Universität Augsburg
Release Date:2022/02/10
Tag:whole-genome sequencing; cancer predisposition; mucin; reactive oxygen species
Volume:14
Issue:3
First Page:670
DOI:https://doi.org/10.3390/cancers14030670
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Biomedizinische Informatik, Data Mining und Data Analytics
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)