Super-localized orthogonal decomposition for convection-dominated diffusion problems
- This paper presents a novel multi-scale method for convection-dominated diffusion problems in the regime of large Péclet numbers. The method involves applying the solution operator to piecewise constant right-hand sides on an arbitrary coarse mesh, which defines a finite-dimensional coarse ansatz space with favorable approximation properties. For some relevant error measures, including the L2-norm, the Galerkin projection onto this generalized finite element space even yields ε-independent errorbounds, ε being the singular perturbation parameter. By constructing an approximate local basis, the approach becomes a novel multi-scale method in the spirit of the SuperLocalized Orthogonal Decomposition (SLOD). The error caused by basis localization can be estimated in an a posteriori way. In contrast to existing multi-scale methods, numerical experiments indicate ε-robust convergence without pre-asymptotic effects even in the under-resolved regime of large mesh Péclet numbers.
Author: | Francesca BonizzoniORCiDGND, Philip FreeseGND, Daniel PeterseimORCiDGND |
---|---|
URN: | urn:nbn:de:bvb:384-opus4-960270 |
Frontdoor URL | https://opus.bibliothek.uni-augsburg.de/opus4/96027 |
ISSN: | 0006-3835OPAC |
Parent Title (English): | BIT Numerical Mathematics |
Publisher: | Springer |
Place of publication: | Berlin |
Type: | Article |
Language: | English |
Year of first Publication: | 2024 |
Publishing Institution: | Universität Augsburg |
Release Date: | 2022/06/08 |
Volume: | 64 |
First Page: | 33 |
DOI: | https://doi.org/10.1007/s10543-024-01035-8 |
Institutes: | Mathematisch-Naturwissenschaftlich-Technische Fakultät |
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik | |
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Lehrstuhl für Numerische Mathematik | |
Dewey Decimal Classification: | 5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik |
Licence (German): | CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand) |