Homogenisation of the Stokes equations for evolving microstructure

  • We consider the homogenisation of the Stokes equations in a porous medium which is evolving in time. At the interface of the pore space and the solid part, we prescribe an inhomogeneous Dirichlet boundary condition, which enables to model a no-slip boundary condition at the evolving boundary. We pass rigorously to the homogenisation limit with the two-scale transformation method. In order to derive uniform a priori estimates, we show a Korn-type inequality for the two-scale transformation method and construct a family of ε-scaled operators div−1ε, which are right-inverse to the corresponding divergences. The homogenisation result is a new version of Darcy's law. It features a time- and space-dependent permeability tensor, which accounts for the local pore structure, and a macroscopic compressibility condition, which induces a new source term for the pressure. In the case of a no-slip boundary condition at the interface, this source term relates to the change of the local pore volume.

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:David WiedemannGND, Malte A. PeterORCiDGND
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/99421
URL:https://arxiv.org/abs/2109.05997
Parent Title (English):arXiv
Type:Preprint
Language:English
Year of first Publication:2021
Release Date:2022/11/17
First Page:arXiv:2109.05997
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Lehr- und Forschungseinheit Angewandte Analysis
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Latest Publications (not yet published in print):Aktuelle Publikationen (noch nicht gedruckt erschienen)