Limit theorems for the tagged particle in exclusion processes on regular trees
- We consider exclusion processes on a rooted d-regular tree. We start from a Bernoulli product measure conditioned on having a particle at the root, which we call the tagged particle. For d≥3, we show that the tagged particle has positive linear speed and satisfies a central limit theorem. We give an explicit formula for the speed. As a key step in the proof, we first show that the exclusion process “seen from the tagged particle” has an ergodic invariant measure.
Author: | Dayue Chen, Peng Chen, Nina Gantert, Dominik SchmidGND |
---|---|
URN: | urn:nbn:de:bvb:384-opus4-1231463 |
Frontdoor URL | https://opus.bibliothek.uni-augsburg.de/opus4/123146 |
ISSN: | 1083-589XOPAC |
Parent Title (English): | Electronic Communications in Probability |
Publisher: | Institute of Mathematical Statistics |
Type: | Article |
Language: | English |
Year of first Publication: | 2019 |
Publishing Institution: | Universität Augsburg |
Release Date: | 2025/06/27 |
Volume: | 24 |
Issue: | 2 |
First Page: | 1 |
Last Page: | 10 |
DOI: | https://doi.org/10.1214/18-ecp205 |
Institutes: | Mathematisch-Naturwissenschaftlich-Technische Fakultät |
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik | |
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Lehrstuhl für Stochastik und ihre Anwendungen | |
Dewey Decimal Classification: | 5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik |
Licence (German): | ![]() |