• search hit 69 of 2983
Back to Result List

Towards breaking the self-imposed filter bubble in argumentative dialogues

  • Human users tend to selectively ignore information that contradicts their pre-existing beliefs or opinions in their process of information seeking. These “self-imposed filter bubbles” (SFB) pose a significant challenge for cooperative argumentative dialogue systems aiming to build an unbiased opinion and a better understanding of the topic at hand. To address this issue, we develop a strategy for overcoming users’ SFB within the course of the interaction. By continuously modeling the user’s position in relation to the SFB, we are able to identify the respective arguments which maximize the probability to get outside the SFB and present them to the user. We implemented this approach in an argumentative dialogue system and evaluated in a laboratory user study with 60 participants to show its validity and applicability. The findings suggest that the strategy was successful in breaking users’ SFBs and promoting a more reflective and comprehensive discussion of the topic.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Annalena AicherORCiDGND, Daniel Kornmueller, Yuki Matsuda, Stefan Ultes, Wolfgang Minker, Keiichi Yasumoto
URN:urn:nbn:de:bvb:384-opus4-1229490
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/122949
ISBN:979-8-89176-028-8OPAC
Parent Title (English):SIGDIAL 2023 - the 24th Meeting of the Special Interest Group on Discourse and Dialogue: proceedings of the conference, September 11-15, 2023, Prague, Czechia
Publisher:Association for Computational Linguistics (ACL)
Place of publication:Stroudsburg, PA
Editor:Shafiq Joty, David Schlangen, Ondrej Dusek, Casey Kennington, Malihe Alikhani
Type:Conference Proceeding
Language:English
Year of first Publication:2023
Publishing Institution:Universität Augsburg
Release Date:2025/06/25
First Page:593
Last Page:604
DOI:https://doi.org/10.18653/v1/2023.sigdial-1.56
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Menschzentrierte Künstliche Intelligenz
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)