• search hit 132 of 3499
Back to Result List

On the number and size of Markov equivalence classes of random directed acyclic graphs

  • In causal inference on directed acyclic graphs, the orientation of edges is in general only recovered up to Markov equivalence classes. We study Markov equivalence classes of uniformly random directed acyclic graphs. Using a tower decomposition, we show that the ratio between the number of Markov equivalence classes and directed acyclic graphs approaches a positive constant when the number of sites goes to infinity. For a typical directed acyclic graph, the expected number of elements in its Markov equivalence class remains bounded. More precisely, we prove that for a uniformly chosen directed acyclic graph, the size of its Markov equivalence class has super-polynomial tails.

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Dominik SchmidGND, Allan Sly
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/123074
Parent Title (English):arXiv
Publisher:arXiv
Type:Preprint
Language:English
Date of Publication (online):2025/06/25
Year of first Publication:2022
Publishing Institution:Universität Augsburg
Release Date:2025/06/26
First Page:arXiv:2209.04395
DOI:https://doi.org/10.48550/arXiv.2209.04395
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Lehrstuhl für Stochastik und ihre Anwendungen
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Latest Publications (not yet published in print):Aktuelle Publikationen (noch nicht gedruckt erschienen)