• search hit 54 of 33832
Back to Result List

Teaching provenance to AI: an annotation scheme for museum data

  • Our paper addresses how artificial intelligence technologies can transform museum records of provenance into structured and machine-readable data, which is the first critical step in undertaking a large-scale cross-institutional analysis of object history. Drawing on research on natural language processing (NLP), we have identified sentence boundary disambiguation and span categorization as highly effective techniques for extracting and structuring information from provenance texts. Our paper focuses on a provenance-specific annotation scheme that enables us to retain historical nuances when constructing provenance linked open data (PLOD).

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Fabio MarianiORCiDGND, Lynn Rother, Max Koss
URN:urn:nbn:de:bvb:384-opus4-1257039
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/125703
ISBN:978-3-8376-6710-3OPAC
ISBN:978-3-8394-6710-7OPAC
ISSN:2702-3990OPAC
ISSN:2702-9026OPAC
Parent Title (English):AI in museums: reflections, perspectives and applications
Publisher:transcript
Place of publication:Bielefeld
Editor:Sonja Thiel, Johannes C. Bernhardt
Type:Part of a Book
Language:English
Year of first Publication:2023
Publishing Institution:Universität Augsburg
Release Date:2025/10/07
First Page:163
Last Page:172
Series:Edition Museum ; 74
DOI:https://doi.org/10.14361/9783839467107-014
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Computerlinguistik
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)