• search hit 3 of 3482
Back to Result List

Short-term fasting attenuates overall steroid hormone biosynthesis in healthy young women

  • Context Fasting is stressful for the human body. It is managed by metabolic adaptations maintaining energy homeostasis and involves steroid hormone biosynthesis, but the exact interplay between energy and steroid metabolism remains elusive. Women with polycystic ovary syndrome (PCOS) suffer from disturbed metabolism and androgen excess, while in women with anorexia nervosa, cortisol and androgen production are decreased. By contrast, starvation of steroidogenic cells shifts adrenal steroid biosynthesis toward enhanced androgen production. Aim This study investigated the effect of fasting on steroid production in healthy women. Methods Twenty healthy young women fasted for 48 hours; steroid profiles from plasma and urine samples were assessed at baseline, after 24 hours, and 48 hours by liquid and gas chromatography–mass spectrometry. Results Fasting did not change overall steroidogenesis, although it increased progestogen production and lowered relative mineralocorticoid,Context Fasting is stressful for the human body. It is managed by metabolic adaptations maintaining energy homeostasis and involves steroid hormone biosynthesis, but the exact interplay between energy and steroid metabolism remains elusive. Women with polycystic ovary syndrome (PCOS) suffer from disturbed metabolism and androgen excess, while in women with anorexia nervosa, cortisol and androgen production are decreased. By contrast, starvation of steroidogenic cells shifts adrenal steroid biosynthesis toward enhanced androgen production. Aim This study investigated the effect of fasting on steroid production in healthy women. Methods Twenty healthy young women fasted for 48 hours; steroid profiles from plasma and urine samples were assessed at baseline, after 24 hours, and 48 hours by liquid and gas chromatography–mass spectrometry. Results Fasting did not change overall steroidogenesis, although it increased progestogen production and lowered relative mineralocorticoid, glucocorticoid, and androgen production. The largest decrease in urine metabolites was seen for β-cortol, dehydroepiandrosterone, and androstenediol; higher levels were found for pregnanediol in urine and progesterone and aldosterone in serum. Activity of 17α-hydroxylase/17,20-lyase (CYP17A1), essential for androgen biosynthesis, was decreased after fasting in healthy women as were 21-hydroxylase (CYP21A2) and 5α-reductase activities. By contrast, hydroxysteroid 11-beta dehydrogenase 1 (HSD11B1) activity for cortisol inactivation seemed to increase with fasting. Conclusion Significant changes in steroid metabolism occurred after 48 hours of fasting in healthy women. In contrast to metabolic changes seen at baseline in PCOS women compared to healthy women, and after starving of steroidogenic cells, no androgen excess was observed after short-term fasting in healthy young women.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Benjamin P. Magyar, Maristella Santi, Grit Sommer, Jean-Marc Nuoffer, Alexander LeichtleORCiDGND, Michael Grössl, Christa E. Fluck
URN:urn:nbn:de:bvb:384-opus4-1248129
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/124812
ISSN:2472-1972OPAC
Parent Title (English):Journal of the Endocrine Society
Publisher:Oxford University Press
Place of publication:Oxford
Type:Article
Language:English
Year of first Publication:2022
Publishing Institution:Universität Augsburg
Release Date:2025/09/01
Volume:6
Issue:7
First Page:bvac075
DOI:https://doi.org/10.1210/jendso/bvac075
Institutes:Medizinische Fakultät
Medizinische Fakultät / Universitätsklinikum
Medizinische Fakultät / Professur für Laboratoriumsmedizin
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Licence (German):License LogoCC-BY-NC-ND 4.0: Creative Commons: Namensnennung - Nicht kommerziell - Keine Bearbeitung (mit Print on Demand)