Balanced interval coloring
- We consider the discrepancy problem of coloring n intervals with k colors such that at each point on the line, the maximal difference between the number of intervals of any two colors is minimal. Somewhat surprisingly, a coloring with maximal difference at most one always exists. Furthermore, we give an algorithm with running time O(n log n + kn log k) for its construction. This is in particular interesting because many known results for discrepancy problems are non-constructive. This problem naturally models a load balancing scenario, where $n$~tasks with given start- and endtimes have to be distributed among $k$~servers. Our results imply that this can be done ideally balanced. When generalizing to $d$-dimensional boxes (instead of intervals), a solution with difference at most one is not always possible. We show that for any d >= 2 and any k >= 2 it is NP-complete to decide if such a solution exists, which implies also NP-hardness of the respective minimization problem. In an onlineWe consider the discrepancy problem of coloring n intervals with k colors such that at each point on the line, the maximal difference between the number of intervals of any two colors is minimal. Somewhat surprisingly, a coloring with maximal difference at most one always exists. Furthermore, we give an algorithm with running time O(n log n + kn log k) for its construction. This is in particular interesting because many known results for discrepancy problems are non-constructive. This problem naturally models a load balancing scenario, where $n$~tasks with given start- and endtimes have to be distributed among $k$~servers. Our results imply that this can be done ideally balanced. When generalizing to $d$-dimensional boxes (instead of intervals), a solution with difference at most one is not always possible. We show that for any d >= 2 and any k >= 2 it is NP-complete to decide if such a solution exists, which implies also NP-hardness of the respective minimization problem. In an online scenario, where intervals arrive over time and the color has to be decided upon arrival, the maximal difference in the size of color classes can become arbitrarily high for any online algorithm.…
Author: | Antonios Antoniadis, Falk Hueffner, Pascal LenznerORCiDGND, Carsten Moldenhauer, Alexander Souza |
---|---|
URN: | urn:nbn:de:bvb:384-opus4-1152467 |
Frontdoor URL | https://opus.bibliothek.uni-augsburg.de/opus4/115246 |
ISBN: | 978-3-939897-25-5OPAC |
Parent Title (English): | 28th International Symposium on Theoretical Aspects of Computer Science (STACS 2011), March 10-12, 2011, Dortmund, Germany |
Publisher: | Schloss Dagstuhl – Leibniz-Zentrum für Informatik |
Place of publication: | Dagstuhl |
Editor: | Thomas Schwentick, Christoph Dürr |
Type: | Conference Proceeding |
Language: | English |
Date of Publication (online): | 2024/09/06 |
Year of first Publication: | 2011 |
Publishing Institution: | Universität Augsburg |
Release Date: | 2024/09/06 |
First Page: | 531 |
Last Page: | 542 |
Series: | Leibniz International Proceedings in Informatics (LIPIcs) ; 9 |
DOI: | https://doi.org/10.4230/LIPIcs.STACS.2011.531 |
Institutes: | Fakultät für Angewandte Informatik |
Fakultät für Angewandte Informatik / Institut für Informatik | |
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Theoretische Informatik | |
Dewey Decimal Classification: | 0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik |
Licence (German): | ![]() |