• search hit 3 of 209
Back to Result List

Global land mapping of satellite-observed CO2 total columns using spatio-temporal geostatistics

  • This study presents an approach for generating a global land mapping dataset of the satellite measurements of CO2 total column (XCO2) using spatio-temporal geostatistics, which makes full use of the joint spatial and temporal dependencies between observations. The mapping approach considers the latitude-zonal seasonal cycles and spatio-temporal correlation structure of XCO2, and obtains global land maps of XCO2, with a spatial grid resolution of 1° latitude by 1° longitude and temporal resolution of 3 days. We evaluate the accuracy and uncertainty of the mapping dataset in the following three ways: (1) in cross-validation, the mapping approach results in a high correlation coefficient of 0.94 between the predictions and observations, (2) in comparison with ground truth provided by the Total Carbon Column Observing Network (TCCON), the predicted XCO2 time series and those from TCCON sites are in good agreement, with an overall bias of 0.01 ppm and a standard deviation of the differenceThis study presents an approach for generating a global land mapping dataset of the satellite measurements of CO2 total column (XCO2) using spatio-temporal geostatistics, which makes full use of the joint spatial and temporal dependencies between observations. The mapping approach considers the latitude-zonal seasonal cycles and spatio-temporal correlation structure of XCO2, and obtains global land maps of XCO2, with a spatial grid resolution of 1° latitude by 1° longitude and temporal resolution of 3 days. We evaluate the accuracy and uncertainty of the mapping dataset in the following three ways: (1) in cross-validation, the mapping approach results in a high correlation coefficient of 0.94 between the predictions and observations, (2) in comparison with ground truth provided by the Total Carbon Column Observing Network (TCCON), the predicted XCO2 time series and those from TCCON sites are in good agreement, with an overall bias of 0.01 ppm and a standard deviation of the difference of 1.22 ppm and (3) in comparison with model simulations, the spatio-temporal variability of XCO2 between the mapping dataset and simulations from the CT2013 and GEOS-Chem are generally consistent. The generated mapping XCO2 data in this study provides a new global geospatial dataset in global understanding of greenhouse gases dynamics and global warming.show moreshow less

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Zhao-Cheng Zeng, Liping Lei, Kimberly Strong, Dylan B. A. Jones, Lijie Guo, Min Liu, Feng Deng, Nicholas M. Deutscher, Manvendra K. Dubey, David W. T. Griffith, Frank Hase, Bradley Henderson, Rigel Kivi, Rodica Lindenmaier, Isamu Morino, Justus Notholt, Hirofumi Ohyama, Christof Petri, Ralf SussmannORCiDGND, Voltaire A. Velazco, Paul O. Wennberg, Hui Lin
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/120695
ISSN:1753-8947OPAC
ISSN:1753-8955OPAC
Parent Title (English):International Journal of Digital Earth
Publisher:Taylor & Francis
Type:Article
Language:English
Year of first Publication:2017
Publishing Institution:Universität Augsburg
Release Date:2025/03/28
Volume:10
Issue:4
First Page:426
Last Page:456
DOI:https://doi.org/10.1080/17538947.2016.1156777
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Geographie
Fakultät für Angewandte Informatik / Institut für Geographie / Lehrstuhl für Physische Geographie mit Schwerpunkt Klimaforschung
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften