• search hit 5 of 209
Back to Result List

The recent increase of atmospheric methane from 10 years of ground-based NDACC FTIR observations since 2005

  • Changes of atmospheric methane total columns (CH4) since 2005 have been evaluated using Fourier transform infrared (FTIR) solar observations carried out at 10 ground-based sites, affiliated to the Network for Detection of Atmospheric Composition Change (NDACC). From this, we find an increase of atmospheric methane total columns of 0.31 ± 0.03 % year−1 (2σ level of uncertainty) for the 2005–2014 period. Comparisons with in situ methane measurements at both local and global scales show good agreement. We used the GEOS-Chem chemical transport model tagged simulation, which accounts for the contribution of each emission source and one sink in the total methane, simulated over 2005–2012. After regridding according to NDACC vertical layering using a conservative regridding scheme and smoothing by convolving with respective FTIR seasonal averaging kernels, the GEOS-Chem simulation shows an increase of atmospheric methane total columns of 0.35 ± 0.03 % year−1 between 2005 and 2012, which is inChanges of atmospheric methane total columns (CH4) since 2005 have been evaluated using Fourier transform infrared (FTIR) solar observations carried out at 10 ground-based sites, affiliated to the Network for Detection of Atmospheric Composition Change (NDACC). From this, we find an increase of atmospheric methane total columns of 0.31 ± 0.03 % year−1 (2σ level of uncertainty) for the 2005–2014 period. Comparisons with in situ methane measurements at both local and global scales show good agreement. We used the GEOS-Chem chemical transport model tagged simulation, which accounts for the contribution of each emission source and one sink in the total methane, simulated over 2005–2012. After regridding according to NDACC vertical layering using a conservative regridding scheme and smoothing by convolving with respective FTIR seasonal averaging kernels, the GEOS-Chem simulation shows an increase of atmospheric methane total columns of 0.35 ± 0.03 % year−1 between 2005 and 2012, which is in agreement with NDACC measurements over the same time period (0.30 ± 0.04 % year−1, averaged over 10 stations). Analysis of the GEOS-Chem-tagged simulation allows us to quantify the contribution of each tracer to the global methane change since 2005. We find that natural sources such as wetlands and biomass burning contribute to the interannual variability of methane. However, anthropogenic emissions, such as coal mining, and gas and oil transport and exploration, which are mainly emitted in the Northern Hemisphere and act as secondary contributors to the global budget of methane, have played a major role in the increase of atmospheric methane observed since 2005. Based on the GEOS-Chem-tagged simulation, we discuss possible cause(s) for the increase of methane since 2005, which is still unexplained.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Whitney Bader, Benoît Bovy, Stephanie Conway, Kimberly Strong, Dan Smale, Alexander J. Turner, Thomas Blumenstock, Chris Boone, Martine Collaud Coen, Ancelin Coulon, Omaira Garcia, David W. T. Griffith, Frank Hase, Petra Hausmann, Nicholas Jones, Paul Krummel, Isao Murata, Isamu Morino, Hideaki Nakajima, Simon O'Doherty, Clare Paton-Walsh, John Robinson, Rodrigue Sandrin, Matthias Schneider, Christian Servais, Ralf SussmannORCiDGND, Emmanuel Mahieu
URN:urn:nbn:de:bvb:384-opus4-1204198
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/120419
ISSN:1680-7324OPAC
Parent Title (English):Atmospheric Chemistry and Physics
Publisher:Copernicus
Type:Article
Language:English
Year of first Publication:2017
Publishing Institution:Universität Augsburg
Release Date:2025/03/17
Volume:17
Issue:3
First Page:2255
Last Page:2277
DOI:https://doi.org/10.5194/acp-17-2255-2017
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Geographie
Fakultät für Angewandte Informatik / Institut für Geographie / Lehrstuhl für Physische Geographie mit Schwerpunkt Klimaforschung
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Licence (German):License LogoCC-BY 3.0: Creative Commons - Namensnennung (mit Print on Demand)