Expansion of the critical intensity for the random connection model
- We derive an asymptotic expansion for the critical percolation density of the random connection model as the dimension of the encapsulating space tends to infinity. We calculate rigorously the first expansion terms for the Gilbert disk model, the hyper-cubic model, the Gaussian connection kernel, and a coordinate-wise Cauchy kernel.
Author: | Matthew Dickson, Markus HeydenreichORCiDGND |
---|---|
URN: | urn:nbn:de:bvb:384-opus4-1170879 |
Frontdoor URL | https://opus.bibliothek.uni-augsburg.de/opus4/117087 |
ISSN: | 0963-5483OPAC |
ISSN: | 1469-2163OPAC |
Parent Title (English): | Combinatorics, Probability and Computing |
Publisher: | Cambridge University Press (CUP) |
Place of publication: | Cambridge |
Type: | Article |
Language: | English |
Year of first Publication: | 2025 |
Publishing Institution: | Universität Augsburg |
Release Date: | 2024/11/27 |
Volume: | 34 |
Issue: | 2 |
First Page: | 158 |
Last Page: | 209 |
DOI: | https://doi.org/10.1017/s0963548324000270 |
Institutes: | Mathematisch-Naturwissenschaftlich-Technische Fakultät |
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik | |
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Lehrstuhl für Stochastik und ihre Anwendungen | |
Dewey Decimal Classification: | 5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik |
Licence (German): | ![]() |