• search hit 21 of 30
Back to Result List

Cross-lingual zero-and few-shot hate speech detection utilising frozen transformer language models and AXEL

  • Detecting hate speech, especially in low-resource languages, is a non-trivial challenge. To tackle this, we developed a tailored architecture based on frozen, pre-trained Transformers to examine cross-lingual zero-shot and few-shot learning, in addition to uni-lingual learning, on the HatEval challenge data set. With our novel attention-based classification block AXEL, we demonstrate highly competitive results on the English and Spanish subsets. We also re-sample the English subset, enabling additional, meaningful comparisons in the future.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Lukas Stappen, Fabian Brunn, Björn W. SchullerORCiDGND
URN:urn:nbn:de:bvb:384-opus4-917123
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/91712
Parent Title (English):arXiv
Type:Preprint
Language:English
Date of Publication (online):2022/01/05
Year of first Publication:2020
Publishing Institution:Universität Augsburg
Release Date:2022/01/28
First Page:arXiv:2004.13850v1
DOI:https://doi.org/10.48550/arXiv.2004.13850
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Embedded Intelligence for Health Care and Wellbeing
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):License LogoDeutsches Urheberrecht