• search hit 4 of 202
Back to Result List

Isotopologue-induced structural dynamics of a triazolate metal-organic framework for efficient hydrogen isotope separation

  • Efficient hydrogen isotope separation remains the biggest challenge due to the nearly identical physicochemical properties of H2 and D2. Through in situ neutron powder diffraction and gas adsorption experiments, we investigate the hydrogen isotopologue-induced structural dynamics of the triazole-based metal-organic framework [Mn(ta)2]. Gas loading induces a measurable lattice expansion, more pronounced for H2 than D2, and two distinct adsorption sites are identified with a subtle but significant difference in the occupancy of H2 and D2 at 60 K. Cryogenic thermal desorption spectroscopy after exposure to a 1:1 isotope mixture reveals an exceptionally high D2/H2 selectivity of 32.5 at 60 K. When exposed to a D2/H2 mixture of 5:95, D2 enriches to 75% in a single cycle. Given the commercial availability of the ligand and the scalability of the dia-framework topology across divalent transition metals, upscaling for industrial-scale deuterium separation is a realistic prospect. Our resultsEfficient hydrogen isotope separation remains the biggest challenge due to the nearly identical physicochemical properties of H2 and D2. Through in situ neutron powder diffraction and gas adsorption experiments, we investigate the hydrogen isotopologue-induced structural dynamics of the triazole-based metal-organic framework [Mn(ta)2]. Gas loading induces a measurable lattice expansion, more pronounced for H2 than D2, and two distinct adsorption sites are identified with a subtle but significant difference in the occupancy of H2 and D2 at 60 K. Cryogenic thermal desorption spectroscopy after exposure to a 1:1 isotope mixture reveals an exceptionally high D2/H2 selectivity of 32.5 at 60 K. When exposed to a D2/H2 mixture of 5:95, D2 enriches to 75% in a single cycle. Given the commercial availability of the ligand and the scalability of the dia-framework topology across divalent transition metals, upscaling for industrial-scale deuterium separation is a realistic prospect. Our results give crucial molecular-level insights into isotopologue-induced structural dynamics in triazolate-based MOFs and provide guidance for improvement of isotope separation materials.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Linda Zhang, Richard Röß-OhlenrothORCiD, Vanessa K. Peterson, Samuel G. Duyker, Cheng Li, Jhonatan Luiz Fiorio, Jan-Ole Joswig, Robert Dinnebier, Dirk VolkmerORCiDGND, Michael Hirscher
URN:urn:nbn:de:bvb:384-opus4-1233467
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/123346
ISSN:2041-1723OPAC
Parent Title (English):Nature Communications
Publisher:Springer Science and Business Media LLC
Type:Article
Language:English
Year of first Publication:2025
Publishing Institution:Universität Augsburg
Release Date:2025/07/05
Volume:16
Issue:1
First Page:5941
DOI:https://doi.org/10.1038/s41467-025-61107-3
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik / Lehrstuhl für Festkörperchemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)