• search hit 11 of 51
Back to Result List

Predictors of engagement with remote sensing technologies for symptom measurement in Major Depressive Disorder

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:F. Matcham, E. Carr, K.M. White, D. Leightley, F. Lamers, S. Siddi, P. Annas, G. de Girolamo, J.M. Haro, M. Horsfall, A. Ivan, G. Lavelle, Q. Li, F. Lombardini, D.C. Mohr, V.A. Narayan, B.W.H.J. Penninx, C. Oetzmann, M. Coromina, S.K. Simblett, J. Weyer, T. Wykes, S. Zorbas, J.C. Brasen, I. Myin-Germeys, P. Conde, R.J.B. Dobson, A.A. Folarin, Y. Ranjan, Z. Rashid, Nicholas CumminsORCiDGND, Judith DineleyORCiD, S. Vairavan, M. Hotopf
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/95423
ISSN:0165-0327OPAC
Parent Title (English):Journal of Affective Disorders
Publisher:Elsevier BV
Type:Article
Language:English
Year of first Publication:2022
Publishing Institution:Universität Augsburg
Release Date:2022/06/22
Tag:Clinical Psychology; Psychiatry and Mental health
Volume:310
First Page:106
Last Page:115
DOI:https://doi.org/10.1016/j.jad.2022.05.005
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Embedded Intelligence for Health Care and Wellbeing