• search hit 13 of 13
Back to Result List

Pressure evolution of electron dynamics in the superconducting kagome metal CsV3Sb5

  • The coexistence of the charge-density wave (CDW) and superconducting phases and their tunability under external pressure remains one of the key points in understanding the electronic structure of AV3Sb5 (A = K, Rb, Cs) kagome metals. Here, we employ synchrotron-based infrared spectroscopy assisted by density-functional calculations to study the pressure evolution of the electronic structure at room temperature up to 17 GPa experimentally. The optical spectrum of CsV3Sb5 is characterized by the presence of localized carriers seen as a broad peak at finite frequencies in addition to the conventional metallic Drude response. The non-monotonic pressure dependence of this low-energy peak reflects the re-entrant behavior of superconductivity and may be interpreted in terms of electron-phonon coupling, varying with the growth and shrinkage of the Fermi surface under pressure. Moreover, drastic modifications in the low-energy interband absorptions are observed upon the suppression of CDW.The coexistence of the charge-density wave (CDW) and superconducting phases and their tunability under external pressure remains one of the key points in understanding the electronic structure of AV3Sb5 (A = K, Rb, Cs) kagome metals. Here, we employ synchrotron-based infrared spectroscopy assisted by density-functional calculations to study the pressure evolution of the electronic structure at room temperature up to 17 GPa experimentally. The optical spectrum of CsV3Sb5 is characterized by the presence of localized carriers seen as a broad peak at finite frequencies in addition to the conventional metallic Drude response. The non-monotonic pressure dependence of this low-energy peak reflects the re-entrant behavior of superconductivity and may be interpreted in terms of electron-phonon coupling, varying with the growth and shrinkage of the Fermi surface under pressure. Moreover, drastic modifications in the low-energy interband absorptions are observed upon the suppression of CDW. These changes are related to the upward shift of the Sb2 px + py band that eliminates part of the Fermi surface around the M-point, whereas band saddle points do not move significantly. These observations shed new light on the mixed electronic and lattice origin of the CDW in CsV3Sb5.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Maxim WenzelORCiD, Alexander A. TsirlinORCiDGND, Francesco CapitaniORCiD, Yuk T. Chan, Brenden R. OrtizORCiD, Stephen D. WilsonORCiD, Martin DresselORCiD, Ece UykurORCiD
URN:urn:nbn:de:bvb:384-opus4-1170610
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/117061
ISSN:2397-4648OPAC
Parent Title (English):npj Quantum Materials
Publisher:Nature Publishing Group UK
Type:Article
Language:English
Date of first Publication:2023/09/01
Publishing Institution:Universität Augsburg
Release Date:2024/11/26
Tag:Engineering
Volume:8
Issue:1
First Page:45
DOI:https://doi.org/10.1038/s41535-023-00577-4
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik / Lehrstuhl für Experimentalphysik VI
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)