• search hit 2 of 2
Back to Result List

SPINEPS - automatic whole spine segmentation of T2-weighted MR images using a two-phase approach to multi-class semantic and instance segmentation

  • Objectives Introducing SPINEPS, a deep learning method for semantic and instance segmentation of 14 spinal structures (ten vertebra substructures, intervertebral discs, spinal cord, spinal canal, and sacrum) in whole-body sagittal T2-weighted turbo spin echo images. Material and methods This local ethics committee-approved study utilized a public dataset (train/test 179/39 subjects, 137 female), a German National Cohort (NAKO) subset (train/test 1412/65 subjects, mean age 53, 694 female), and an in-house dataset (test 10 subjects, mean age 70, 5 female). SPINEPS is a semantic segmentation model, followed by a sliding window approach utilizing a second model to create instance masks from the semantic ones. Segmentation evaluation metrics included the Dice score and average symmetrical surface distance (ASSD). Statistical significance was assessed using the Wilcoxon signed-rank test. Results On the public dataset, SPINEPS outperformed a nnUNet baseline on every structure andObjectives Introducing SPINEPS, a deep learning method for semantic and instance segmentation of 14 spinal structures (ten vertebra substructures, intervertebral discs, spinal cord, spinal canal, and sacrum) in whole-body sagittal T2-weighted turbo spin echo images. Material and methods This local ethics committee-approved study utilized a public dataset (train/test 179/39 subjects, 137 female), a German National Cohort (NAKO) subset (train/test 1412/65 subjects, mean age 53, 694 female), and an in-house dataset (test 10 subjects, mean age 70, 5 female). SPINEPS is a semantic segmentation model, followed by a sliding window approach utilizing a second model to create instance masks from the semantic ones. Segmentation evaluation metrics included the Dice score and average symmetrical surface distance (ASSD). Statistical significance was assessed using the Wilcoxon signed-rank test. Results On the public dataset, SPINEPS outperformed a nnUNet baseline on every structure and metric (e.g., an average over vertebra instances: dice 0.933 vs 0.911, p < 0.001, ASSD 0.21 vs 0.435, p < 0.001). SPINEPS trained on automated annotations of the NAKO achieves an average global Dice score of 0.918 on the combined NAKO and in-house test split. Adding the training data from the public dataset outperforms this (average instance-wise Dice score over the vertebra substructures 0.803 vs 0.778, average global Dice score 0.931 vs 0.918). Conclusion SPINEPS offers segmentation of 14 spinal structures in T2w sagittal images. It provides a semantic mask and an instance mask separating the vertebrae and intervertebral discs. This is the first publicly available algorithm to enable this segmentation.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Hendrik MöllerORCiD, Robert Graf, Joachim Schmitt, Benjamin Keinert, Hanna Schön, Matan Atad, Anjany Sekuboyina, Felix Streckenbach, Florian Kofler, Thomas KroenckeORCiDGND, Stefanie BetteGND, Stefan N. Willich, Thomas Keil, Thoralf Niendorf, Tobias Pischon, Beate Endemann, Bjoern Menze, Daniel Rueckert, Jan S. Kirschke
URN:urn:nbn:de:bvb:384-opus4-1169347
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/116934
ISSN:1432-1084OPAC
Parent Title (English):European Radiology
Publisher:Springer Science and Business Media LLC
Place of publication:Berlin
Type:Article
Language:English
Year of first Publication:2025
Publishing Institution:Universität Augsburg
Release Date:2024/11/27
Volume:35
Issue:3
First Page:1178
Last Page:1189
DOI:https://doi.org/10.1007/s00330-024-11155-y
Institutes:Medizinische Fakultät
Medizinische Fakultät / Universitätsklinikum
Medizinische Fakultät / Lehrstuhl für Diagnostische und Interventionelle Radiologie
Fakultätsübergreifende Institute und Einrichtungen / Zentrum für Advanced Analytics and Predictive Sciences (CAAPS)
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Licence (German):License LogoCC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)