• search hit 93 of 100
Back to Result List

Human-level differentiation of medulloblastoma from pilocytic astrocytoma: a real-world multicenter pilot study

  • Medulloblastoma and pilocytic astrocytoma are the two most common pediatric brain tumors with overlapping imaging features. In this proof-of-concept study, we investigated using a deep learning classifier trained on a multicenter data set to differentiate these tumor types. We developed a patch-based 3D-DenseNet classifier, utilizing automated tumor segmentation. Given the heterogeneity of imaging data (and available sequences), we used all individually available preoperative imaging sequences to make the model robust to varying input. We compared the classifier to diagnostic assessments by five readers with varying experience in pediatric brain tumors. Overall, we included 195 preoperative MRIs from children with medulloblastoma (n = 69) or pilocytic astrocytoma (n = 126) across six university hospitals. In the 64-patient test set, the DenseNet classifier achieved a high AUC of 0.986, correctly predicting 62/64 (97%) diagnoses. It misclassified one case of each tumor type. HumanMedulloblastoma and pilocytic astrocytoma are the two most common pediatric brain tumors with overlapping imaging features. In this proof-of-concept study, we investigated using a deep learning classifier trained on a multicenter data set to differentiate these tumor types. We developed a patch-based 3D-DenseNet classifier, utilizing automated tumor segmentation. Given the heterogeneity of imaging data (and available sequences), we used all individually available preoperative imaging sequences to make the model robust to varying input. We compared the classifier to diagnostic assessments by five readers with varying experience in pediatric brain tumors. Overall, we included 195 preoperative MRIs from children with medulloblastoma (n = 69) or pilocytic astrocytoma (n = 126) across six university hospitals. In the 64-patient test set, the DenseNet classifier achieved a high AUC of 0.986, correctly predicting 62/64 (97%) diagnoses. It misclassified one case of each tumor type. Human reader accuracy ranged from 100% (expert neuroradiologist) to 80% (resident). The classifier performed significantly better than relatively inexperienced readers (p < 0.05) and was on par with pediatric neuro-oncology experts. Our proof-of-concept study demonstrates a deep learning model based on automated tumor segmentation that can reliably preoperatively differentiate between medulloblastoma and pilocytic astrocytoma, even in heterogeneous data.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Benedikt Wiestler, Brigitte BisonORCiDGND, Lars BehrensORCiDGND, Stefanie TüchertORCiDGND, Marie Metz, Michael Griessmair, Marcus Jakob, Paul-Gerhardt Schlegel, Vera Binder, Irene von Luettichau, Markus Metzler, Pascal JohannORCiDGND, Peter Hau, Michael FrühwaldORCiDGND
URN:urn:nbn:de:bvb:384-opus4-1209879
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/120987
ISSN:2072-6694OPAC
Parent Title (English):Cancers
Publisher:MDPI AG
Type:Article
Language:English
Year of first Publication:2024
Publishing Institution:Universität Augsburg
Release Date:2025/04/24
Volume:16
Issue:8
First Page:1474
DOI:https://doi.org/10.3390/cancers16081474
Institutes:Medizinische Fakultät
Medizinische Fakultät / Universitätsklinikum
Medizinische Fakultät / Lehrstuhl für Diagnostische und Interventionelle Radiologie
Medizinische Fakultät / Lehrstuhl für Kinder- und Jugendmedizin
Medizinische Fakultät / Lehrstuhl für Diagnostische und Interventionelle Neuroradiologie
Medizinische Fakultät / Professur für Experimentelle Pädiatrie
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Licence (German):License LogoCC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)